[289] | 1 | <?php |
---|
| 2 | /** |
---|
| 3 | * PHPExcel |
---|
| 4 | * |
---|
| 5 | * Copyright (c) 2006 - 2014 PHPExcel |
---|
| 6 | * |
---|
| 7 | * This library is free software; you can redistribute it and/or |
---|
| 8 | * modify it under the terms of the GNU Lesser General Public |
---|
| 9 | * License as published by the Free Software Foundation; either |
---|
| 10 | * version 2.1 of the License, or (at your option) any later version. |
---|
| 11 | * |
---|
| 12 | * This library is distributed in the hope that it will be useful, |
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
| 15 | * Lesser General Public License for more details. |
---|
| 16 | * |
---|
| 17 | * You should have received a copy of the GNU Lesser General Public |
---|
| 18 | * License along with this library; if not, write to the Free Software |
---|
| 19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
---|
| 20 | * |
---|
| 21 | * @category PHPExcel |
---|
| 22 | * @package PHPExcel_Calculation |
---|
| 23 | * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel) |
---|
| 24 | * @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL |
---|
| 25 | * @version 1.8.0, 2014-03-02 |
---|
| 26 | */ |
---|
| 27 | |
---|
| 28 | |
---|
| 29 | /** PHPExcel root directory */ |
---|
| 30 | if (!defined('PHPEXCEL_ROOT')) { |
---|
| 31 | /** |
---|
| 32 | * @ignore |
---|
| 33 | */ |
---|
| 34 | define('PHPEXCEL_ROOT', dirname(__FILE__) . '/../../'); |
---|
| 35 | require(PHPEXCEL_ROOT . 'PHPExcel/Autoloader.php'); |
---|
| 36 | } |
---|
| 37 | |
---|
| 38 | |
---|
| 39 | require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/trendClass.php'; |
---|
| 40 | |
---|
| 41 | |
---|
| 42 | /** LOG_GAMMA_X_MAX_VALUE */ |
---|
| 43 | define('LOG_GAMMA_X_MAX_VALUE', 2.55e305); |
---|
| 44 | |
---|
| 45 | /** XMININ */ |
---|
| 46 | define('XMININ', 2.23e-308); |
---|
| 47 | |
---|
| 48 | /** EPS */ |
---|
| 49 | define('EPS', 2.22e-16); |
---|
| 50 | |
---|
| 51 | /** SQRT2PI */ |
---|
| 52 | define('SQRT2PI', 2.5066282746310005024157652848110452530069867406099); |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | /** |
---|
| 56 | * PHPExcel_Calculation_Statistical |
---|
| 57 | * |
---|
| 58 | * @category PHPExcel |
---|
| 59 | * @package PHPExcel_Calculation |
---|
| 60 | * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel) |
---|
| 61 | */ |
---|
| 62 | class PHPExcel_Calculation_Statistical { |
---|
| 63 | |
---|
| 64 | |
---|
| 65 | private static function _checkTrendArrays(&$array1,&$array2) { |
---|
| 66 | if (!is_array($array1)) { $array1 = array($array1); } |
---|
| 67 | if (!is_array($array2)) { $array2 = array($array2); } |
---|
| 68 | |
---|
| 69 | $array1 = PHPExcel_Calculation_Functions::flattenArray($array1); |
---|
| 70 | $array2 = PHPExcel_Calculation_Functions::flattenArray($array2); |
---|
| 71 | foreach($array1 as $key => $value) { |
---|
| 72 | if ((is_bool($value)) || (is_string($value)) || (is_null($value))) { |
---|
| 73 | unset($array1[$key]); |
---|
| 74 | unset($array2[$key]); |
---|
| 75 | } |
---|
| 76 | } |
---|
| 77 | foreach($array2 as $key => $value) { |
---|
| 78 | if ((is_bool($value)) || (is_string($value)) || (is_null($value))) { |
---|
| 79 | unset($array1[$key]); |
---|
| 80 | unset($array2[$key]); |
---|
| 81 | } |
---|
| 82 | } |
---|
| 83 | $array1 = array_merge($array1); |
---|
| 84 | $array2 = array_merge($array2); |
---|
| 85 | |
---|
| 86 | return True; |
---|
| 87 | } // function _checkTrendArrays() |
---|
| 88 | |
---|
| 89 | |
---|
| 90 | /** |
---|
| 91 | * Beta function. |
---|
| 92 | * |
---|
| 93 | * @author Jaco van Kooten |
---|
| 94 | * |
---|
| 95 | * @param p require p>0 |
---|
| 96 | * @param q require q>0 |
---|
| 97 | * @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow |
---|
| 98 | */ |
---|
| 99 | private static function _beta($p, $q) { |
---|
| 100 | if ($p <= 0.0 || $q <= 0.0 || ($p + $q) > LOG_GAMMA_X_MAX_VALUE) { |
---|
| 101 | return 0.0; |
---|
| 102 | } else { |
---|
| 103 | return exp(self::_logBeta($p, $q)); |
---|
| 104 | } |
---|
| 105 | } // function _beta() |
---|
| 106 | |
---|
| 107 | |
---|
| 108 | /** |
---|
| 109 | * Incomplete beta function |
---|
| 110 | * |
---|
| 111 | * @author Jaco van Kooten |
---|
| 112 | * @author Paul Meagher |
---|
| 113 | * |
---|
| 114 | * The computation is based on formulas from Numerical Recipes, Chapter 6.4 (W.H. Press et al, 1992). |
---|
| 115 | * @param x require 0<=x<=1 |
---|
| 116 | * @param p require p>0 |
---|
| 117 | * @param q require q>0 |
---|
| 118 | * @return 0 if x<0, p<=0, q<=0 or p+q>2.55E305 and 1 if x>1 to avoid errors and over/underflow |
---|
| 119 | */ |
---|
| 120 | private static function _incompleteBeta($x, $p, $q) { |
---|
| 121 | if ($x <= 0.0) { |
---|
| 122 | return 0.0; |
---|
| 123 | } elseif ($x >= 1.0) { |
---|
| 124 | return 1.0; |
---|
| 125 | } elseif (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) { |
---|
| 126 | return 0.0; |
---|
| 127 | } |
---|
| 128 | $beta_gam = exp((0 - self::_logBeta($p, $q)) + $p * log($x) + $q * log(1.0 - $x)); |
---|
| 129 | if ($x < ($p + 1.0) / ($p + $q + 2.0)) { |
---|
| 130 | return $beta_gam * self::_betaFraction($x, $p, $q) / $p; |
---|
| 131 | } else { |
---|
| 132 | return 1.0 - ($beta_gam * self::_betaFraction(1 - $x, $q, $p) / $q); |
---|
| 133 | } |
---|
| 134 | } // function _incompleteBeta() |
---|
| 135 | |
---|
| 136 | |
---|
| 137 | // Function cache for _logBeta function |
---|
| 138 | private static $_logBetaCache_p = 0.0; |
---|
| 139 | private static $_logBetaCache_q = 0.0; |
---|
| 140 | private static $_logBetaCache_result = 0.0; |
---|
| 141 | |
---|
| 142 | /** |
---|
| 143 | * The natural logarithm of the beta function. |
---|
| 144 | * |
---|
| 145 | * @param p require p>0 |
---|
| 146 | * @param q require q>0 |
---|
| 147 | * @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow |
---|
| 148 | * @author Jaco van Kooten |
---|
| 149 | */ |
---|
| 150 | private static function _logBeta($p, $q) { |
---|
| 151 | if ($p != self::$_logBetaCache_p || $q != self::$_logBetaCache_q) { |
---|
| 152 | self::$_logBetaCache_p = $p; |
---|
| 153 | self::$_logBetaCache_q = $q; |
---|
| 154 | if (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) { |
---|
| 155 | self::$_logBetaCache_result = 0.0; |
---|
| 156 | } else { |
---|
| 157 | self::$_logBetaCache_result = self::_logGamma($p) + self::_logGamma($q) - self::_logGamma($p + $q); |
---|
| 158 | } |
---|
| 159 | } |
---|
| 160 | return self::$_logBetaCache_result; |
---|
| 161 | } // function _logBeta() |
---|
| 162 | |
---|
| 163 | |
---|
| 164 | /** |
---|
| 165 | * Evaluates of continued fraction part of incomplete beta function. |
---|
| 166 | * Based on an idea from Numerical Recipes (W.H. Press et al, 1992). |
---|
| 167 | * @author Jaco van Kooten |
---|
| 168 | */ |
---|
| 169 | private static function _betaFraction($x, $p, $q) { |
---|
| 170 | $c = 1.0; |
---|
| 171 | $sum_pq = $p + $q; |
---|
| 172 | $p_plus = $p + 1.0; |
---|
| 173 | $p_minus = $p - 1.0; |
---|
| 174 | $h = 1.0 - $sum_pq * $x / $p_plus; |
---|
| 175 | if (abs($h) < XMININ) { |
---|
| 176 | $h = XMININ; |
---|
| 177 | } |
---|
| 178 | $h = 1.0 / $h; |
---|
| 179 | $frac = $h; |
---|
| 180 | $m = 1; |
---|
| 181 | $delta = 0.0; |
---|
| 182 | while ($m <= MAX_ITERATIONS && abs($delta-1.0) > PRECISION ) { |
---|
| 183 | $m2 = 2 * $m; |
---|
| 184 | // even index for d |
---|
| 185 | $d = $m * ($q - $m) * $x / ( ($p_minus + $m2) * ($p + $m2)); |
---|
| 186 | $h = 1.0 + $d * $h; |
---|
| 187 | if (abs($h) < XMININ) { |
---|
| 188 | $h = XMININ; |
---|
| 189 | } |
---|
| 190 | $h = 1.0 / $h; |
---|
| 191 | $c = 1.0 + $d / $c; |
---|
| 192 | if (abs($c) < XMININ) { |
---|
| 193 | $c = XMININ; |
---|
| 194 | } |
---|
| 195 | $frac *= $h * $c; |
---|
| 196 | // odd index for d |
---|
| 197 | $d = -($p + $m) * ($sum_pq + $m) * $x / (($p + $m2) * ($p_plus + $m2)); |
---|
| 198 | $h = 1.0 + $d * $h; |
---|
| 199 | if (abs($h) < XMININ) { |
---|
| 200 | $h = XMININ; |
---|
| 201 | } |
---|
| 202 | $h = 1.0 / $h; |
---|
| 203 | $c = 1.0 + $d / $c; |
---|
| 204 | if (abs($c) < XMININ) { |
---|
| 205 | $c = XMININ; |
---|
| 206 | } |
---|
| 207 | $delta = $h * $c; |
---|
| 208 | $frac *= $delta; |
---|
| 209 | ++$m; |
---|
| 210 | } |
---|
| 211 | return $frac; |
---|
| 212 | } // function _betaFraction() |
---|
| 213 | |
---|
| 214 | |
---|
| 215 | /** |
---|
| 216 | * logGamma function |
---|
| 217 | * |
---|
| 218 | * @version 1.1 |
---|
| 219 | * @author Jaco van Kooten |
---|
| 220 | * |
---|
| 221 | * Original author was Jaco van Kooten. Ported to PHP by Paul Meagher. |
---|
| 222 | * |
---|
| 223 | * The natural logarithm of the gamma function. <br /> |
---|
| 224 | * Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz <br /> |
---|
| 225 | * Applied Mathematics Division <br /> |
---|
| 226 | * Argonne National Laboratory <br /> |
---|
| 227 | * Argonne, IL 60439 <br /> |
---|
| 228 | * <p> |
---|
| 229 | * References: |
---|
| 230 | * <ol> |
---|
| 231 | * <li>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural |
---|
| 232 | * Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.</li> |
---|
| 233 | * <li>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.</li> |
---|
| 234 | * <li>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.</li> |
---|
| 235 | * </ol> |
---|
| 236 | * </p> |
---|
| 237 | * <p> |
---|
| 238 | * From the original documentation: |
---|
| 239 | * </p> |
---|
| 240 | * <p> |
---|
| 241 | * This routine calculates the LOG(GAMMA) function for a positive real argument X. |
---|
| 242 | * Computation is based on an algorithm outlined in references 1 and 2. |
---|
| 243 | * The program uses rational functions that theoretically approximate LOG(GAMMA) |
---|
| 244 | * to at least 18 significant decimal digits. The approximation for X > 12 is from |
---|
| 245 | * reference 3, while approximations for X < 12.0 are similar to those in reference |
---|
| 246 | * 1, but are unpublished. The accuracy achieved depends on the arithmetic system, |
---|
| 247 | * the compiler, the intrinsic functions, and proper selection of the |
---|
| 248 | * machine-dependent constants. |
---|
| 249 | * </p> |
---|
| 250 | * <p> |
---|
| 251 | * Error returns: <br /> |
---|
| 252 | * The program returns the value XINF for X .LE. 0.0 or when overflow would occur. |
---|
| 253 | * The computation is believed to be free of underflow and overflow. |
---|
| 254 | * </p> |
---|
| 255 | * @return MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305 |
---|
| 256 | */ |
---|
| 257 | |
---|
| 258 | // Function cache for logGamma |
---|
| 259 | private static $_logGammaCache_result = 0.0; |
---|
| 260 | private static $_logGammaCache_x = 0.0; |
---|
| 261 | |
---|
| 262 | private static function _logGamma($x) { |
---|
| 263 | // Log Gamma related constants |
---|
| 264 | static $lg_d1 = -0.5772156649015328605195174; |
---|
| 265 | static $lg_d2 = 0.4227843350984671393993777; |
---|
| 266 | static $lg_d4 = 1.791759469228055000094023; |
---|
| 267 | |
---|
| 268 | static $lg_p1 = array( 4.945235359296727046734888, |
---|
| 269 | 201.8112620856775083915565, |
---|
| 270 | 2290.838373831346393026739, |
---|
| 271 | 11319.67205903380828685045, |
---|
| 272 | 28557.24635671635335736389, |
---|
| 273 | 38484.96228443793359990269, |
---|
| 274 | 26377.48787624195437963534, |
---|
| 275 | 7225.813979700288197698961 ); |
---|
| 276 | static $lg_p2 = array( 4.974607845568932035012064, |
---|
| 277 | 542.4138599891070494101986, |
---|
| 278 | 15506.93864978364947665077, |
---|
| 279 | 184793.2904445632425417223, |
---|
| 280 | 1088204.76946882876749847, |
---|
| 281 | 3338152.967987029735917223, |
---|
| 282 | 5106661.678927352456275255, |
---|
| 283 | 3074109.054850539556250927 ); |
---|
| 284 | static $lg_p4 = array( 14745.02166059939948905062, |
---|
| 285 | 2426813.369486704502836312, |
---|
| 286 | 121475557.4045093227939592, |
---|
| 287 | 2663432449.630976949898078, |
---|
| 288 | 29403789566.34553899906876, |
---|
| 289 | 170266573776.5398868392998, |
---|
| 290 | 492612579337.743088758812, |
---|
| 291 | 560625185622.3951465078242 ); |
---|
| 292 | |
---|
| 293 | static $lg_q1 = array( 67.48212550303777196073036, |
---|
| 294 | 1113.332393857199323513008, |
---|
| 295 | 7738.757056935398733233834, |
---|
| 296 | 27639.87074403340708898585, |
---|
| 297 | 54993.10206226157329794414, |
---|
| 298 | 61611.22180066002127833352, |
---|
| 299 | 36351.27591501940507276287, |
---|
| 300 | 8785.536302431013170870835 ); |
---|
| 301 | static $lg_q2 = array( 183.0328399370592604055942, |
---|
| 302 | 7765.049321445005871323047, |
---|
| 303 | 133190.3827966074194402448, |
---|
| 304 | 1136705.821321969608938755, |
---|
| 305 | 5267964.117437946917577538, |
---|
| 306 | 13467014.54311101692290052, |
---|
| 307 | 17827365.30353274213975932, |
---|
| 308 | 9533095.591844353613395747 ); |
---|
| 309 | static $lg_q4 = array( 2690.530175870899333379843, |
---|
| 310 | 639388.5654300092398984238, |
---|
| 311 | 41355999.30241388052042842, |
---|
| 312 | 1120872109.61614794137657, |
---|
| 313 | 14886137286.78813811542398, |
---|
| 314 | 101680358627.2438228077304, |
---|
| 315 | 341747634550.7377132798597, |
---|
| 316 | 446315818741.9713286462081 ); |
---|
| 317 | |
---|
| 318 | static $lg_c = array( -0.001910444077728, |
---|
| 319 | 8.4171387781295e-4, |
---|
| 320 | -5.952379913043012e-4, |
---|
| 321 | 7.93650793500350248e-4, |
---|
| 322 | -0.002777777777777681622553, |
---|
| 323 | 0.08333333333333333331554247, |
---|
| 324 | 0.0057083835261 ); |
---|
| 325 | |
---|
| 326 | // Rough estimate of the fourth root of logGamma_xBig |
---|
| 327 | static $lg_frtbig = 2.25e76; |
---|
| 328 | static $pnt68 = 0.6796875; |
---|
| 329 | |
---|
| 330 | |
---|
| 331 | if ($x == self::$_logGammaCache_x) { |
---|
| 332 | return self::$_logGammaCache_result; |
---|
| 333 | } |
---|
| 334 | $y = $x; |
---|
| 335 | if ($y > 0.0 && $y <= LOG_GAMMA_X_MAX_VALUE) { |
---|
| 336 | if ($y <= EPS) { |
---|
| 337 | $res = -log(y); |
---|
| 338 | } elseif ($y <= 1.5) { |
---|
| 339 | // --------------------- |
---|
| 340 | // EPS .LT. X .LE. 1.5 |
---|
| 341 | // --------------------- |
---|
| 342 | if ($y < $pnt68) { |
---|
| 343 | $corr = -log($y); |
---|
| 344 | $xm1 = $y; |
---|
| 345 | } else { |
---|
| 346 | $corr = 0.0; |
---|
| 347 | $xm1 = $y - 1.0; |
---|
| 348 | } |
---|
| 349 | if ($y <= 0.5 || $y >= $pnt68) { |
---|
| 350 | $xden = 1.0; |
---|
| 351 | $xnum = 0.0; |
---|
| 352 | for ($i = 0; $i < 8; ++$i) { |
---|
| 353 | $xnum = $xnum * $xm1 + $lg_p1[$i]; |
---|
| 354 | $xden = $xden * $xm1 + $lg_q1[$i]; |
---|
| 355 | } |
---|
| 356 | $res = $corr + $xm1 * ($lg_d1 + $xm1 * ($xnum / $xden)); |
---|
| 357 | } else { |
---|
| 358 | $xm2 = $y - 1.0; |
---|
| 359 | $xden = 1.0; |
---|
| 360 | $xnum = 0.0; |
---|
| 361 | for ($i = 0; $i < 8; ++$i) { |
---|
| 362 | $xnum = $xnum * $xm2 + $lg_p2[$i]; |
---|
| 363 | $xden = $xden * $xm2 + $lg_q2[$i]; |
---|
| 364 | } |
---|
| 365 | $res = $corr + $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden)); |
---|
| 366 | } |
---|
| 367 | } elseif ($y <= 4.0) { |
---|
| 368 | // --------------------- |
---|
| 369 | // 1.5 .LT. X .LE. 4.0 |
---|
| 370 | // --------------------- |
---|
| 371 | $xm2 = $y - 2.0; |
---|
| 372 | $xden = 1.0; |
---|
| 373 | $xnum = 0.0; |
---|
| 374 | for ($i = 0; $i < 8; ++$i) { |
---|
| 375 | $xnum = $xnum * $xm2 + $lg_p2[$i]; |
---|
| 376 | $xden = $xden * $xm2 + $lg_q2[$i]; |
---|
| 377 | } |
---|
| 378 | $res = $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden)); |
---|
| 379 | } elseif ($y <= 12.0) { |
---|
| 380 | // ---------------------- |
---|
| 381 | // 4.0 .LT. X .LE. 12.0 |
---|
| 382 | // ---------------------- |
---|
| 383 | $xm4 = $y - 4.0; |
---|
| 384 | $xden = -1.0; |
---|
| 385 | $xnum = 0.0; |
---|
| 386 | for ($i = 0; $i < 8; ++$i) { |
---|
| 387 | $xnum = $xnum * $xm4 + $lg_p4[$i]; |
---|
| 388 | $xden = $xden * $xm4 + $lg_q4[$i]; |
---|
| 389 | } |
---|
| 390 | $res = $lg_d4 + $xm4 * ($xnum / $xden); |
---|
| 391 | } else { |
---|
| 392 | // --------------------------------- |
---|
| 393 | // Evaluate for argument .GE. 12.0 |
---|
| 394 | // --------------------------------- |
---|
| 395 | $res = 0.0; |
---|
| 396 | if ($y <= $lg_frtbig) { |
---|
| 397 | $res = $lg_c[6]; |
---|
| 398 | $ysq = $y * $y; |
---|
| 399 | for ($i = 0; $i < 6; ++$i) |
---|
| 400 | $res = $res / $ysq + $lg_c[$i]; |
---|
| 401 | } |
---|
| 402 | $res /= $y; |
---|
| 403 | $corr = log($y); |
---|
| 404 | $res = $res + log(SQRT2PI) - 0.5 * $corr; |
---|
| 405 | $res += $y * ($corr - 1.0); |
---|
| 406 | } |
---|
| 407 | } else { |
---|
| 408 | // -------------------------- |
---|
| 409 | // Return for bad arguments |
---|
| 410 | // -------------------------- |
---|
| 411 | $res = MAX_VALUE; |
---|
| 412 | } |
---|
| 413 | // ------------------------------ |
---|
| 414 | // Final adjustments and return |
---|
| 415 | // ------------------------------ |
---|
| 416 | self::$_logGammaCache_x = $x; |
---|
| 417 | self::$_logGammaCache_result = $res; |
---|
| 418 | return $res; |
---|
| 419 | } // function _logGamma() |
---|
| 420 | |
---|
| 421 | |
---|
| 422 | // |
---|
| 423 | // Private implementation of the incomplete Gamma function |
---|
| 424 | // |
---|
| 425 | private static function _incompleteGamma($a,$x) { |
---|
| 426 | static $max = 32; |
---|
| 427 | $summer = 0; |
---|
| 428 | for ($n=0; $n<=$max; ++$n) { |
---|
| 429 | $divisor = $a; |
---|
| 430 | for ($i=1; $i<=$n; ++$i) { |
---|
| 431 | $divisor *= ($a + $i); |
---|
| 432 | } |
---|
| 433 | $summer += (pow($x,$n) / $divisor); |
---|
| 434 | } |
---|
| 435 | return pow($x,$a) * exp(0-$x) * $summer; |
---|
| 436 | } // function _incompleteGamma() |
---|
| 437 | |
---|
| 438 | |
---|
| 439 | // |
---|
| 440 | // Private implementation of the Gamma function |
---|
| 441 | // |
---|
| 442 | private static function _gamma($data) { |
---|
| 443 | if ($data == 0.0) return 0; |
---|
| 444 | |
---|
| 445 | static $p0 = 1.000000000190015; |
---|
| 446 | static $p = array ( 1 => 76.18009172947146, |
---|
| 447 | 2 => -86.50532032941677, |
---|
| 448 | 3 => 24.01409824083091, |
---|
| 449 | 4 => -1.231739572450155, |
---|
| 450 | 5 => 1.208650973866179e-3, |
---|
| 451 | 6 => -5.395239384953e-6 |
---|
| 452 | ); |
---|
| 453 | |
---|
| 454 | $y = $x = $data; |
---|
| 455 | $tmp = $x + 5.5; |
---|
| 456 | $tmp -= ($x + 0.5) * log($tmp); |
---|
| 457 | |
---|
| 458 | $summer = $p0; |
---|
| 459 | for ($j=1;$j<=6;++$j) { |
---|
| 460 | $summer += ($p[$j] / ++$y); |
---|
| 461 | } |
---|
| 462 | return exp(0 - $tmp + log(SQRT2PI * $summer / $x)); |
---|
| 463 | } // function _gamma() |
---|
| 464 | |
---|
| 465 | |
---|
| 466 | /*************************************************************************** |
---|
| 467 | * inverse_ncdf.php |
---|
| 468 | * ------------------- |
---|
| 469 | * begin : Friday, January 16, 2004 |
---|
| 470 | * copyright : (C) 2004 Michael Nickerson |
---|
| 471 | * email : nickersonm@yahoo.com |
---|
| 472 | * |
---|
| 473 | ***************************************************************************/ |
---|
| 474 | private static function _inverse_ncdf($p) { |
---|
| 475 | // Inverse ncdf approximation by Peter J. Acklam, implementation adapted to |
---|
| 476 | // PHP by Michael Nickerson, using Dr. Thomas Ziegler's C implementation as |
---|
| 477 | // a guide. http://home.online.no/~pjacklam/notes/invnorm/index.html |
---|
| 478 | // I have not checked the accuracy of this implementation. Be aware that PHP |
---|
| 479 | // will truncate the coeficcients to 14 digits. |
---|
| 480 | |
---|
| 481 | // You have permission to use and distribute this function freely for |
---|
| 482 | // whatever purpose you want, but please show common courtesy and give credit |
---|
| 483 | // where credit is due. |
---|
| 484 | |
---|
| 485 | // Input paramater is $p - probability - where 0 < p < 1. |
---|
| 486 | |
---|
| 487 | // Coefficients in rational approximations |
---|
| 488 | static $a = array( 1 => -3.969683028665376e+01, |
---|
| 489 | 2 => 2.209460984245205e+02, |
---|
| 490 | 3 => -2.759285104469687e+02, |
---|
| 491 | 4 => 1.383577518672690e+02, |
---|
| 492 | 5 => -3.066479806614716e+01, |
---|
| 493 | 6 => 2.506628277459239e+00 |
---|
| 494 | ); |
---|
| 495 | |
---|
| 496 | static $b = array( 1 => -5.447609879822406e+01, |
---|
| 497 | 2 => 1.615858368580409e+02, |
---|
| 498 | 3 => -1.556989798598866e+02, |
---|
| 499 | 4 => 6.680131188771972e+01, |
---|
| 500 | 5 => -1.328068155288572e+01 |
---|
| 501 | ); |
---|
| 502 | |
---|
| 503 | static $c = array( 1 => -7.784894002430293e-03, |
---|
| 504 | 2 => -3.223964580411365e-01, |
---|
| 505 | 3 => -2.400758277161838e+00, |
---|
| 506 | 4 => -2.549732539343734e+00, |
---|
| 507 | 5 => 4.374664141464968e+00, |
---|
| 508 | 6 => 2.938163982698783e+00 |
---|
| 509 | ); |
---|
| 510 | |
---|
| 511 | static $d = array( 1 => 7.784695709041462e-03, |
---|
| 512 | 2 => 3.224671290700398e-01, |
---|
| 513 | 3 => 2.445134137142996e+00, |
---|
| 514 | 4 => 3.754408661907416e+00 |
---|
| 515 | ); |
---|
| 516 | |
---|
| 517 | // Define lower and upper region break-points. |
---|
| 518 | $p_low = 0.02425; //Use lower region approx. below this |
---|
| 519 | $p_high = 1 - $p_low; //Use upper region approx. above this |
---|
| 520 | |
---|
| 521 | if (0 < $p && $p < $p_low) { |
---|
| 522 | // Rational approximation for lower region. |
---|
| 523 | $q = sqrt(-2 * log($p)); |
---|
| 524 | return ((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) / |
---|
| 525 | (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1); |
---|
| 526 | } elseif ($p_low <= $p && $p <= $p_high) { |
---|
| 527 | // Rational approximation for central region. |
---|
| 528 | $q = $p - 0.5; |
---|
| 529 | $r = $q * $q; |
---|
| 530 | return ((((($a[1] * $r + $a[2]) * $r + $a[3]) * $r + $a[4]) * $r + $a[5]) * $r + $a[6]) * $q / |
---|
| 531 | ((((($b[1] * $r + $b[2]) * $r + $b[3]) * $r + $b[4]) * $r + $b[5]) * $r + 1); |
---|
| 532 | } elseif ($p_high < $p && $p < 1) { |
---|
| 533 | // Rational approximation for upper region. |
---|
| 534 | $q = sqrt(-2 * log(1 - $p)); |
---|
| 535 | return -((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) / |
---|
| 536 | (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1); |
---|
| 537 | } |
---|
| 538 | // If 0 < p < 1, return a null value |
---|
| 539 | return PHPExcel_Calculation_Functions::NULL(); |
---|
| 540 | } // function _inverse_ncdf() |
---|
| 541 | |
---|
| 542 | |
---|
| 543 | private static function _inverse_ncdf2($prob) { |
---|
| 544 | // Approximation of inverse standard normal CDF developed by |
---|
| 545 | // B. Moro, "The Full Monte," Risk 8(2), Feb 1995, 57-58. |
---|
| 546 | |
---|
| 547 | $a1 = 2.50662823884; |
---|
| 548 | $a2 = -18.61500062529; |
---|
| 549 | $a3 = 41.39119773534; |
---|
| 550 | $a4 = -25.44106049637; |
---|
| 551 | |
---|
| 552 | $b1 = -8.4735109309; |
---|
| 553 | $b2 = 23.08336743743; |
---|
| 554 | $b3 = -21.06224101826; |
---|
| 555 | $b4 = 3.13082909833; |
---|
| 556 | |
---|
| 557 | $c1 = 0.337475482272615; |
---|
| 558 | $c2 = 0.976169019091719; |
---|
| 559 | $c3 = 0.160797971491821; |
---|
| 560 | $c4 = 2.76438810333863E-02; |
---|
| 561 | $c5 = 3.8405729373609E-03; |
---|
| 562 | $c6 = 3.951896511919E-04; |
---|
| 563 | $c7 = 3.21767881768E-05; |
---|
| 564 | $c8 = 2.888167364E-07; |
---|
| 565 | $c9 = 3.960315187E-07; |
---|
| 566 | |
---|
| 567 | $y = $prob - 0.5; |
---|
| 568 | if (abs($y) < 0.42) { |
---|
| 569 | $z = ($y * $y); |
---|
| 570 | $z = $y * ((($a4 * $z + $a3) * $z + $a2) * $z + $a1) / (((($b4 * $z + $b3) * $z + $b2) * $z + $b1) * $z + 1); |
---|
| 571 | } else { |
---|
| 572 | if ($y > 0) { |
---|
| 573 | $z = log(-log(1 - $prob)); |
---|
| 574 | } else { |
---|
| 575 | $z = log(-log($prob)); |
---|
| 576 | } |
---|
| 577 | $z = $c1 + $z * ($c2 + $z * ($c3 + $z * ($c4 + $z * ($c5 + $z * ($c6 + $z * ($c7 + $z * ($c8 + $z * $c9))))))); |
---|
| 578 | if ($y < 0) { |
---|
| 579 | $z = -$z; |
---|
| 580 | } |
---|
| 581 | } |
---|
| 582 | return $z; |
---|
| 583 | } // function _inverse_ncdf2() |
---|
| 584 | |
---|
| 585 | |
---|
| 586 | private static function _inverse_ncdf3($p) { |
---|
| 587 | // ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3. |
---|
| 588 | // Produces the normal deviate Z corresponding to a given lower |
---|
| 589 | // tail area of P; Z is accurate to about 1 part in 10**16. |
---|
| 590 | // |
---|
| 591 | // This is a PHP version of the original FORTRAN code that can |
---|
| 592 | // be found at http://lib.stat.cmu.edu/apstat/ |
---|
| 593 | $split1 = 0.425; |
---|
| 594 | $split2 = 5; |
---|
| 595 | $const1 = 0.180625; |
---|
| 596 | $const2 = 1.6; |
---|
| 597 | |
---|
| 598 | // coefficients for p close to 0.5 |
---|
| 599 | $a0 = 3.3871328727963666080; |
---|
| 600 | $a1 = 1.3314166789178437745E+2; |
---|
| 601 | $a2 = 1.9715909503065514427E+3; |
---|
| 602 | $a3 = 1.3731693765509461125E+4; |
---|
| 603 | $a4 = 4.5921953931549871457E+4; |
---|
| 604 | $a5 = 6.7265770927008700853E+4; |
---|
| 605 | $a6 = 3.3430575583588128105E+4; |
---|
| 606 | $a7 = 2.5090809287301226727E+3; |
---|
| 607 | |
---|
| 608 | $b1 = 4.2313330701600911252E+1; |
---|
| 609 | $b2 = 6.8718700749205790830E+2; |
---|
| 610 | $b3 = 5.3941960214247511077E+3; |
---|
| 611 | $b4 = 2.1213794301586595867E+4; |
---|
| 612 | $b5 = 3.9307895800092710610E+4; |
---|
| 613 | $b6 = 2.8729085735721942674E+4; |
---|
| 614 | $b7 = 5.2264952788528545610E+3; |
---|
| 615 | |
---|
| 616 | // coefficients for p not close to 0, 0.5 or 1. |
---|
| 617 | $c0 = 1.42343711074968357734; |
---|
| 618 | $c1 = 4.63033784615654529590; |
---|
| 619 | $c2 = 5.76949722146069140550; |
---|
| 620 | $c3 = 3.64784832476320460504; |
---|
| 621 | $c4 = 1.27045825245236838258; |
---|
| 622 | $c5 = 2.41780725177450611770E-1; |
---|
| 623 | $c6 = 2.27238449892691845833E-2; |
---|
| 624 | $c7 = 7.74545014278341407640E-4; |
---|
| 625 | |
---|
| 626 | $d1 = 2.05319162663775882187; |
---|
| 627 | $d2 = 1.67638483018380384940; |
---|
| 628 | $d3 = 6.89767334985100004550E-1; |
---|
| 629 | $d4 = 1.48103976427480074590E-1; |
---|
| 630 | $d5 = 1.51986665636164571966E-2; |
---|
| 631 | $d6 = 5.47593808499534494600E-4; |
---|
| 632 | $d7 = 1.05075007164441684324E-9; |
---|
| 633 | |
---|
| 634 | // coefficients for p near 0 or 1. |
---|
| 635 | $e0 = 6.65790464350110377720; |
---|
| 636 | $e1 = 5.46378491116411436990; |
---|
| 637 | $e2 = 1.78482653991729133580; |
---|
| 638 | $e3 = 2.96560571828504891230E-1; |
---|
| 639 | $e4 = 2.65321895265761230930E-2; |
---|
| 640 | $e5 = 1.24266094738807843860E-3; |
---|
| 641 | $e6 = 2.71155556874348757815E-5; |
---|
| 642 | $e7 = 2.01033439929228813265E-7; |
---|
| 643 | |
---|
| 644 | $f1 = 5.99832206555887937690E-1; |
---|
| 645 | $f2 = 1.36929880922735805310E-1; |
---|
| 646 | $f3 = 1.48753612908506148525E-2; |
---|
| 647 | $f4 = 7.86869131145613259100E-4; |
---|
| 648 | $f5 = 1.84631831751005468180E-5; |
---|
| 649 | $f6 = 1.42151175831644588870E-7; |
---|
| 650 | $f7 = 2.04426310338993978564E-15; |
---|
| 651 | |
---|
| 652 | $q = $p - 0.5; |
---|
| 653 | |
---|
| 654 | // computation for p close to 0.5 |
---|
| 655 | if (abs($q) <= split1) { |
---|
| 656 | $R = $const1 - $q * $q; |
---|
| 657 | $z = $q * ((((((($a7 * $R + $a6) * $R + $a5) * $R + $a4) * $R + $a3) * $R + $a2) * $R + $a1) * $R + $a0) / |
---|
| 658 | ((((((($b7 * $R + $b6) * $R + $b5) * $R + $b4) * $R + $b3) * $R + $b2) * $R + $b1) * $R + 1); |
---|
| 659 | } else { |
---|
| 660 | if ($q < 0) { |
---|
| 661 | $R = $p; |
---|
| 662 | } else { |
---|
| 663 | $R = 1 - $p; |
---|
| 664 | } |
---|
| 665 | $R = pow(-log($R),2); |
---|
| 666 | |
---|
| 667 | // computation for p not close to 0, 0.5 or 1. |
---|
| 668 | If ($R <= $split2) { |
---|
| 669 | $R = $R - $const2; |
---|
| 670 | $z = ((((((($c7 * $R + $c6) * $R + $c5) * $R + $c4) * $R + $c3) * $R + $c2) * $R + $c1) * $R + $c0) / |
---|
| 671 | ((((((($d7 * $R + $d6) * $R + $d5) * $R + $d4) * $R + $d3) * $R + $d2) * $R + $d1) * $R + 1); |
---|
| 672 | } else { |
---|
| 673 | // computation for p near 0 or 1. |
---|
| 674 | $R = $R - $split2; |
---|
| 675 | $z = ((((((($e7 * $R + $e6) * $R + $e5) * $R + $e4) * $R + $e3) * $R + $e2) * $R + $e1) * $R + $e0) / |
---|
| 676 | ((((((($f7 * $R + $f6) * $R + $f5) * $R + $f4) * $R + $f3) * $R + $f2) * $R + $f1) * $R + 1); |
---|
| 677 | } |
---|
| 678 | if ($q < 0) { |
---|
| 679 | $z = -$z; |
---|
| 680 | } |
---|
| 681 | } |
---|
| 682 | return $z; |
---|
| 683 | } // function _inverse_ncdf3() |
---|
| 684 | |
---|
| 685 | |
---|
| 686 | /** |
---|
| 687 | * AVEDEV |
---|
| 688 | * |
---|
| 689 | * Returns the average of the absolute deviations of data points from their mean. |
---|
| 690 | * AVEDEV is a measure of the variability in a data set. |
---|
| 691 | * |
---|
| 692 | * Excel Function: |
---|
| 693 | * AVEDEV(value1[,value2[, ...]]) |
---|
| 694 | * |
---|
| 695 | * @access public |
---|
| 696 | * @category Statistical Functions |
---|
| 697 | * @param mixed $arg,... Data values |
---|
| 698 | * @return float |
---|
| 699 | */ |
---|
| 700 | public static function AVEDEV() { |
---|
| 701 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
| 702 | |
---|
| 703 | // Return value |
---|
| 704 | $returnValue = null; |
---|
| 705 | |
---|
| 706 | $aMean = self::AVERAGE($aArgs); |
---|
| 707 | if ($aMean != PHPExcel_Calculation_Functions::DIV0()) { |
---|
| 708 | $aCount = 0; |
---|
| 709 | foreach ($aArgs as $k => $arg) { |
---|
| 710 | if ((is_bool($arg)) && |
---|
| 711 | ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
---|
| 712 | $arg = (integer) $arg; |
---|
| 713 | } |
---|
| 714 | // Is it a numeric value? |
---|
| 715 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 716 | if (is_null($returnValue)) { |
---|
| 717 | $returnValue = abs($arg - $aMean); |
---|
| 718 | } else { |
---|
| 719 | $returnValue += abs($arg - $aMean); |
---|
| 720 | } |
---|
| 721 | ++$aCount; |
---|
| 722 | } |
---|
| 723 | } |
---|
| 724 | |
---|
| 725 | // Return |
---|
| 726 | if ($aCount == 0) { |
---|
| 727 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
| 728 | } |
---|
| 729 | return $returnValue / $aCount; |
---|
| 730 | } |
---|
| 731 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 732 | } // function AVEDEV() |
---|
| 733 | |
---|
| 734 | |
---|
| 735 | /** |
---|
| 736 | * AVERAGE |
---|
| 737 | * |
---|
| 738 | * Returns the average (arithmetic mean) of the arguments |
---|
| 739 | * |
---|
| 740 | * Excel Function: |
---|
| 741 | * AVERAGE(value1[,value2[, ...]]) |
---|
| 742 | * |
---|
| 743 | * @access public |
---|
| 744 | * @category Statistical Functions |
---|
| 745 | * @param mixed $arg,... Data values |
---|
| 746 | * @return float |
---|
| 747 | */ |
---|
| 748 | public static function AVERAGE() { |
---|
| 749 | $returnValue = $aCount = 0; |
---|
| 750 | |
---|
| 751 | // Loop through arguments |
---|
| 752 | foreach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) { |
---|
| 753 | if ((is_bool($arg)) && |
---|
| 754 | ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
---|
| 755 | $arg = (integer) $arg; |
---|
| 756 | } |
---|
| 757 | // Is it a numeric value? |
---|
| 758 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 759 | if (is_null($returnValue)) { |
---|
| 760 | $returnValue = $arg; |
---|
| 761 | } else { |
---|
| 762 | $returnValue += $arg; |
---|
| 763 | } |
---|
| 764 | ++$aCount; |
---|
| 765 | } |
---|
| 766 | } |
---|
| 767 | |
---|
| 768 | // Return |
---|
| 769 | if ($aCount > 0) { |
---|
| 770 | return $returnValue / $aCount; |
---|
| 771 | } else { |
---|
| 772 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
| 773 | } |
---|
| 774 | } // function AVERAGE() |
---|
| 775 | |
---|
| 776 | |
---|
| 777 | /** |
---|
| 778 | * AVERAGEA |
---|
| 779 | * |
---|
| 780 | * Returns the average of its arguments, including numbers, text, and logical values |
---|
| 781 | * |
---|
| 782 | * Excel Function: |
---|
| 783 | * AVERAGEA(value1[,value2[, ...]]) |
---|
| 784 | * |
---|
| 785 | * @access public |
---|
| 786 | * @category Statistical Functions |
---|
| 787 | * @param mixed $arg,... Data values |
---|
| 788 | * @return float |
---|
| 789 | */ |
---|
| 790 | public static function AVERAGEA() { |
---|
| 791 | // Return value |
---|
| 792 | $returnValue = null; |
---|
| 793 | |
---|
| 794 | $aCount = 0; |
---|
| 795 | // Loop through arguments |
---|
| 796 | foreach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) { |
---|
| 797 | if ((is_bool($arg)) && |
---|
| 798 | (!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
---|
| 799 | } else { |
---|
| 800 | if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { |
---|
| 801 | if (is_bool($arg)) { |
---|
| 802 | $arg = (integer) $arg; |
---|
| 803 | } elseif (is_string($arg)) { |
---|
| 804 | $arg = 0; |
---|
| 805 | } |
---|
| 806 | if (is_null($returnValue)) { |
---|
| 807 | $returnValue = $arg; |
---|
| 808 | } else { |
---|
| 809 | $returnValue += $arg; |
---|
| 810 | } |
---|
| 811 | ++$aCount; |
---|
| 812 | } |
---|
| 813 | } |
---|
| 814 | } |
---|
| 815 | |
---|
| 816 | // Return |
---|
| 817 | if ($aCount > 0) { |
---|
| 818 | return $returnValue / $aCount; |
---|
| 819 | } else { |
---|
| 820 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
| 821 | } |
---|
| 822 | } // function AVERAGEA() |
---|
| 823 | |
---|
| 824 | |
---|
| 825 | /** |
---|
| 826 | * AVERAGEIF |
---|
| 827 | * |
---|
| 828 | * Returns the average value from a range of cells that contain numbers within the list of arguments |
---|
| 829 | * |
---|
| 830 | * Excel Function: |
---|
| 831 | * AVERAGEIF(value1[,value2[, ...]],condition) |
---|
| 832 | * |
---|
| 833 | * @access public |
---|
| 834 | * @category Mathematical and Trigonometric Functions |
---|
| 835 | * @param mixed $arg,... Data values |
---|
| 836 | * @param string $condition The criteria that defines which cells will be checked. |
---|
| 837 | * @param mixed[] $averageArgs Data values |
---|
| 838 | * @return float |
---|
| 839 | */ |
---|
| 840 | public static function AVERAGEIF($aArgs,$condition,$averageArgs = array()) { |
---|
| 841 | // Return value |
---|
| 842 | $returnValue = 0; |
---|
| 843 | |
---|
| 844 | $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs); |
---|
| 845 | $averageArgs = PHPExcel_Calculation_Functions::flattenArray($averageArgs); |
---|
| 846 | if (empty($averageArgs)) { |
---|
| 847 | $averageArgs = $aArgs; |
---|
| 848 | } |
---|
| 849 | $condition = PHPExcel_Calculation_Functions::_ifCondition($condition); |
---|
| 850 | // Loop through arguments |
---|
| 851 | $aCount = 0; |
---|
| 852 | foreach ($aArgs as $key => $arg) { |
---|
| 853 | if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); } |
---|
| 854 | $testCondition = '='.$arg.$condition; |
---|
| 855 | if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) { |
---|
| 856 | if ((is_null($returnValue)) || ($arg > $returnValue)) { |
---|
| 857 | $returnValue += $arg; |
---|
| 858 | ++$aCount; |
---|
| 859 | } |
---|
| 860 | } |
---|
| 861 | } |
---|
| 862 | |
---|
| 863 | // Return |
---|
| 864 | if ($aCount > 0) { |
---|
| 865 | return $returnValue / $aCount; |
---|
| 866 | } else { |
---|
| 867 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
| 868 | } |
---|
| 869 | } // function AVERAGEIF() |
---|
| 870 | |
---|
| 871 | |
---|
| 872 | /** |
---|
| 873 | * BETADIST |
---|
| 874 | * |
---|
| 875 | * Returns the beta distribution. |
---|
| 876 | * |
---|
| 877 | * @param float $value Value at which you want to evaluate the distribution |
---|
| 878 | * @param float $alpha Parameter to the distribution |
---|
| 879 | * @param float $beta Parameter to the distribution |
---|
| 880 | * @param boolean $cumulative |
---|
| 881 | * @return float |
---|
| 882 | * |
---|
| 883 | */ |
---|
| 884 | public static function BETADIST($value,$alpha,$beta,$rMin=0,$rMax=1) { |
---|
| 885 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
| 886 | $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
---|
| 887 | $beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta); |
---|
| 888 | $rMin = PHPExcel_Calculation_Functions::flattenSingleValue($rMin); |
---|
| 889 | $rMax = PHPExcel_Calculation_Functions::flattenSingleValue($rMax); |
---|
| 890 | |
---|
| 891 | if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) { |
---|
| 892 | if (($value < $rMin) || ($value > $rMax) || ($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax)) { |
---|
| 893 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 894 | } |
---|
| 895 | if ($rMin > $rMax) { |
---|
| 896 | $tmp = $rMin; |
---|
| 897 | $rMin = $rMax; |
---|
| 898 | $rMax = $tmp; |
---|
| 899 | } |
---|
| 900 | $value -= $rMin; |
---|
| 901 | $value /= ($rMax - $rMin); |
---|
| 902 | return self::_incompleteBeta($value,$alpha,$beta); |
---|
| 903 | } |
---|
| 904 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 905 | } // function BETADIST() |
---|
| 906 | |
---|
| 907 | |
---|
| 908 | /** |
---|
| 909 | * BETAINV |
---|
| 910 | * |
---|
| 911 | * Returns the inverse of the beta distribution. |
---|
| 912 | * |
---|
| 913 | * @param float $probability Probability at which you want to evaluate the distribution |
---|
| 914 | * @param float $alpha Parameter to the distribution |
---|
| 915 | * @param float $beta Parameter to the distribution |
---|
| 916 | * @param float $rMin Minimum value |
---|
| 917 | * @param float $rMax Maximum value |
---|
| 918 | * @param boolean $cumulative |
---|
| 919 | * @return float |
---|
| 920 | * |
---|
| 921 | */ |
---|
| 922 | public static function BETAINV($probability,$alpha,$beta,$rMin=0,$rMax=1) { |
---|
| 923 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
| 924 | $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
---|
| 925 | $beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta); |
---|
| 926 | $rMin = PHPExcel_Calculation_Functions::flattenSingleValue($rMin); |
---|
| 927 | $rMax = PHPExcel_Calculation_Functions::flattenSingleValue($rMax); |
---|
| 928 | |
---|
| 929 | if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) { |
---|
| 930 | if (($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax) || ($probability <= 0) || ($probability > 1)) { |
---|
| 931 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 932 | } |
---|
| 933 | if ($rMin > $rMax) { |
---|
| 934 | $tmp = $rMin; |
---|
| 935 | $rMin = $rMax; |
---|
| 936 | $rMax = $tmp; |
---|
| 937 | } |
---|
| 938 | $a = 0; |
---|
| 939 | $b = 2; |
---|
| 940 | |
---|
| 941 | $i = 0; |
---|
| 942 | while ((($b - $a) > PRECISION) && ($i++ < MAX_ITERATIONS)) { |
---|
| 943 | $guess = ($a + $b) / 2; |
---|
| 944 | $result = self::BETADIST($guess, $alpha, $beta); |
---|
| 945 | if (($result == $probability) || ($result == 0)) { |
---|
| 946 | $b = $a; |
---|
| 947 | } elseif ($result > $probability) { |
---|
| 948 | $b = $guess; |
---|
| 949 | } else { |
---|
| 950 | $a = $guess; |
---|
| 951 | } |
---|
| 952 | } |
---|
| 953 | if ($i == MAX_ITERATIONS) { |
---|
| 954 | return PHPExcel_Calculation_Functions::NA(); |
---|
| 955 | } |
---|
| 956 | return round($rMin + $guess * ($rMax - $rMin),12); |
---|
| 957 | } |
---|
| 958 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 959 | } // function BETAINV() |
---|
| 960 | |
---|
| 961 | |
---|
| 962 | /** |
---|
| 963 | * BINOMDIST |
---|
| 964 | * |
---|
| 965 | * Returns the individual term binomial distribution probability. Use BINOMDIST in problems with |
---|
| 966 | * a fixed number of tests or trials, when the outcomes of any trial are only success or failure, |
---|
| 967 | * when trials are independent, and when the probability of success is constant throughout the |
---|
| 968 | * experiment. For example, BINOMDIST can calculate the probability that two of the next three |
---|
| 969 | * babies born are male. |
---|
| 970 | * |
---|
| 971 | * @param float $value Number of successes in trials |
---|
| 972 | * @param float $trials Number of trials |
---|
| 973 | * @param float $probability Probability of success on each trial |
---|
| 974 | * @param boolean $cumulative |
---|
| 975 | * @return float |
---|
| 976 | * |
---|
| 977 | * @todo Cumulative distribution function |
---|
| 978 | * |
---|
| 979 | */ |
---|
| 980 | public static function BINOMDIST($value, $trials, $probability, $cumulative) { |
---|
| 981 | $value = floor(PHPExcel_Calculation_Functions::flattenSingleValue($value)); |
---|
| 982 | $trials = floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials)); |
---|
| 983 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
| 984 | |
---|
| 985 | if ((is_numeric($value)) && (is_numeric($trials)) && (is_numeric($probability))) { |
---|
| 986 | if (($value < 0) || ($value > $trials)) { |
---|
| 987 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 988 | } |
---|
| 989 | if (($probability < 0) || ($probability > 1)) { |
---|
| 990 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 991 | } |
---|
| 992 | if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
---|
| 993 | if ($cumulative) { |
---|
| 994 | $summer = 0; |
---|
| 995 | for ($i = 0; $i <= $value; ++$i) { |
---|
| 996 | $summer += PHPExcel_Calculation_MathTrig::COMBIN($trials,$i) * pow($probability,$i) * pow(1 - $probability,$trials - $i); |
---|
| 997 | } |
---|
| 998 | return $summer; |
---|
| 999 | } else { |
---|
| 1000 | return PHPExcel_Calculation_MathTrig::COMBIN($trials,$value) * pow($probability,$value) * pow(1 - $probability,$trials - $value) ; |
---|
| 1001 | } |
---|
| 1002 | } |
---|
| 1003 | } |
---|
| 1004 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1005 | } // function BINOMDIST() |
---|
| 1006 | |
---|
| 1007 | |
---|
| 1008 | /** |
---|
| 1009 | * CHIDIST |
---|
| 1010 | * |
---|
| 1011 | * Returns the one-tailed probability of the chi-squared distribution. |
---|
| 1012 | * |
---|
| 1013 | * @param float $value Value for the function |
---|
| 1014 | * @param float $degrees degrees of freedom |
---|
| 1015 | * @return float |
---|
| 1016 | */ |
---|
| 1017 | public static function CHIDIST($value, $degrees) { |
---|
| 1018 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
| 1019 | $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees)); |
---|
| 1020 | |
---|
| 1021 | if ((is_numeric($value)) && (is_numeric($degrees))) { |
---|
| 1022 | if ($degrees < 1) { |
---|
| 1023 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1024 | } |
---|
| 1025 | if ($value < 0) { |
---|
| 1026 | if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) { |
---|
| 1027 | return 1; |
---|
| 1028 | } |
---|
| 1029 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1030 | } |
---|
| 1031 | return 1 - (self::_incompleteGamma($degrees/2,$value/2) / self::_gamma($degrees/2)); |
---|
| 1032 | } |
---|
| 1033 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1034 | } // function CHIDIST() |
---|
| 1035 | |
---|
| 1036 | |
---|
| 1037 | /** |
---|
| 1038 | * CHIINV |
---|
| 1039 | * |
---|
| 1040 | * Returns the one-tailed probability of the chi-squared distribution. |
---|
| 1041 | * |
---|
| 1042 | * @param float $probability Probability for the function |
---|
| 1043 | * @param float $degrees degrees of freedom |
---|
| 1044 | * @return float |
---|
| 1045 | */ |
---|
| 1046 | public static function CHIINV($probability, $degrees) { |
---|
| 1047 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
| 1048 | $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees)); |
---|
| 1049 | |
---|
| 1050 | if ((is_numeric($probability)) && (is_numeric($degrees))) { |
---|
| 1051 | |
---|
| 1052 | $xLo = 100; |
---|
| 1053 | $xHi = 0; |
---|
| 1054 | |
---|
| 1055 | $x = $xNew = 1; |
---|
| 1056 | $dx = 1; |
---|
| 1057 | $i = 0; |
---|
| 1058 | |
---|
| 1059 | while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) { |
---|
| 1060 | // Apply Newton-Raphson step |
---|
| 1061 | $result = self::CHIDIST($x, $degrees); |
---|
| 1062 | $error = $result - $probability; |
---|
| 1063 | if ($error == 0.0) { |
---|
| 1064 | $dx = 0; |
---|
| 1065 | } elseif ($error < 0.0) { |
---|
| 1066 | $xLo = $x; |
---|
| 1067 | } else { |
---|
| 1068 | $xHi = $x; |
---|
| 1069 | } |
---|
| 1070 | // Avoid division by zero |
---|
| 1071 | if ($result != 0.0) { |
---|
| 1072 | $dx = $error / $result; |
---|
| 1073 | $xNew = $x - $dx; |
---|
| 1074 | } |
---|
| 1075 | // If the NR fails to converge (which for example may be the |
---|
| 1076 | // case if the initial guess is too rough) we apply a bisection |
---|
| 1077 | // step to determine a more narrow interval around the root. |
---|
| 1078 | if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) { |
---|
| 1079 | $xNew = ($xLo + $xHi) / 2; |
---|
| 1080 | $dx = $xNew - $x; |
---|
| 1081 | } |
---|
| 1082 | $x = $xNew; |
---|
| 1083 | } |
---|
| 1084 | if ($i == MAX_ITERATIONS) { |
---|
| 1085 | return PHPExcel_Calculation_Functions::NA(); |
---|
| 1086 | } |
---|
| 1087 | return round($x,12); |
---|
| 1088 | } |
---|
| 1089 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1090 | } // function CHIINV() |
---|
| 1091 | |
---|
| 1092 | |
---|
| 1093 | /** |
---|
| 1094 | * CONFIDENCE |
---|
| 1095 | * |
---|
| 1096 | * Returns the confidence interval for a population mean |
---|
| 1097 | * |
---|
| 1098 | * @param float $alpha |
---|
| 1099 | * @param float $stdDev Standard Deviation |
---|
| 1100 | * @param float $size |
---|
| 1101 | * @return float |
---|
| 1102 | * |
---|
| 1103 | */ |
---|
| 1104 | public static function CONFIDENCE($alpha,$stdDev,$size) { |
---|
| 1105 | $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
---|
| 1106 | $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
---|
| 1107 | $size = floor(PHPExcel_Calculation_Functions::flattenSingleValue($size)); |
---|
| 1108 | |
---|
| 1109 | if ((is_numeric($alpha)) && (is_numeric($stdDev)) && (is_numeric($size))) { |
---|
| 1110 | if (($alpha <= 0) || ($alpha >= 1)) { |
---|
| 1111 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1112 | } |
---|
| 1113 | if (($stdDev <= 0) || ($size < 1)) { |
---|
| 1114 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1115 | } |
---|
| 1116 | return self::NORMSINV(1 - $alpha / 2) * $stdDev / sqrt($size); |
---|
| 1117 | } |
---|
| 1118 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1119 | } // function CONFIDENCE() |
---|
| 1120 | |
---|
| 1121 | |
---|
| 1122 | /** |
---|
| 1123 | * CORREL |
---|
| 1124 | * |
---|
| 1125 | * Returns covariance, the average of the products of deviations for each data point pair. |
---|
| 1126 | * |
---|
| 1127 | * @param array of mixed Data Series Y |
---|
| 1128 | * @param array of mixed Data Series X |
---|
| 1129 | * @return float |
---|
| 1130 | */ |
---|
| 1131 | public static function CORREL($yValues,$xValues=null) { |
---|
| 1132 | if ((is_null($xValues)) || (!is_array($yValues)) || (!is_array($xValues))) { |
---|
| 1133 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1134 | } |
---|
| 1135 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
| 1136 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1137 | } |
---|
| 1138 | $yValueCount = count($yValues); |
---|
| 1139 | $xValueCount = count($xValues); |
---|
| 1140 | |
---|
| 1141 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
| 1142 | return PHPExcel_Calculation_Functions::NA(); |
---|
| 1143 | } elseif ($yValueCount == 1) { |
---|
| 1144 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
| 1145 | } |
---|
| 1146 | |
---|
| 1147 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
---|
| 1148 | return $bestFitLinear->getCorrelation(); |
---|
| 1149 | } // function CORREL() |
---|
| 1150 | |
---|
| 1151 | |
---|
| 1152 | /** |
---|
| 1153 | * COUNT |
---|
| 1154 | * |
---|
| 1155 | * Counts the number of cells that contain numbers within the list of arguments |
---|
| 1156 | * |
---|
| 1157 | * Excel Function: |
---|
| 1158 | * COUNT(value1[,value2[, ...]]) |
---|
| 1159 | * |
---|
| 1160 | * @access public |
---|
| 1161 | * @category Statistical Functions |
---|
| 1162 | * @param mixed $arg,... Data values |
---|
| 1163 | * @return int |
---|
| 1164 | */ |
---|
| 1165 | public static function COUNT() { |
---|
| 1166 | // Return value |
---|
| 1167 | $returnValue = 0; |
---|
| 1168 | |
---|
| 1169 | // Loop through arguments |
---|
| 1170 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
| 1171 | foreach ($aArgs as $k => $arg) { |
---|
| 1172 | if ((is_bool($arg)) && |
---|
| 1173 | ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
---|
| 1174 | $arg = (integer) $arg; |
---|
| 1175 | } |
---|
| 1176 | // Is it a numeric value? |
---|
| 1177 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 1178 | ++$returnValue; |
---|
| 1179 | } |
---|
| 1180 | } |
---|
| 1181 | |
---|
| 1182 | // Return |
---|
| 1183 | return $returnValue; |
---|
| 1184 | } // function COUNT() |
---|
| 1185 | |
---|
| 1186 | |
---|
| 1187 | /** |
---|
| 1188 | * COUNTA |
---|
| 1189 | * |
---|
| 1190 | * Counts the number of cells that are not empty within the list of arguments |
---|
| 1191 | * |
---|
| 1192 | * Excel Function: |
---|
| 1193 | * COUNTA(value1[,value2[, ...]]) |
---|
| 1194 | * |
---|
| 1195 | * @access public |
---|
| 1196 | * @category Statistical Functions |
---|
| 1197 | * @param mixed $arg,... Data values |
---|
| 1198 | * @return int |
---|
| 1199 | */ |
---|
| 1200 | public static function COUNTA() { |
---|
| 1201 | // Return value |
---|
| 1202 | $returnValue = 0; |
---|
| 1203 | |
---|
| 1204 | // Loop through arguments |
---|
| 1205 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
| 1206 | foreach ($aArgs as $arg) { |
---|
| 1207 | // Is it a numeric, boolean or string value? |
---|
| 1208 | if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { |
---|
| 1209 | ++$returnValue; |
---|
| 1210 | } |
---|
| 1211 | } |
---|
| 1212 | |
---|
| 1213 | // Return |
---|
| 1214 | return $returnValue; |
---|
| 1215 | } // function COUNTA() |
---|
| 1216 | |
---|
| 1217 | |
---|
| 1218 | /** |
---|
| 1219 | * COUNTBLANK |
---|
| 1220 | * |
---|
| 1221 | * Counts the number of empty cells within the list of arguments |
---|
| 1222 | * |
---|
| 1223 | * Excel Function: |
---|
| 1224 | * COUNTBLANK(value1[,value2[, ...]]) |
---|
| 1225 | * |
---|
| 1226 | * @access public |
---|
| 1227 | * @category Statistical Functions |
---|
| 1228 | * @param mixed $arg,... Data values |
---|
| 1229 | * @return int |
---|
| 1230 | */ |
---|
| 1231 | public static function COUNTBLANK() { |
---|
| 1232 | // Return value |
---|
| 1233 | $returnValue = 0; |
---|
| 1234 | |
---|
| 1235 | // Loop through arguments |
---|
| 1236 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
| 1237 | foreach ($aArgs as $arg) { |
---|
| 1238 | // Is it a blank cell? |
---|
| 1239 | if ((is_null($arg)) || ((is_string($arg)) && ($arg == ''))) { |
---|
| 1240 | ++$returnValue; |
---|
| 1241 | } |
---|
| 1242 | } |
---|
| 1243 | |
---|
| 1244 | // Return |
---|
| 1245 | return $returnValue; |
---|
| 1246 | } // function COUNTBLANK() |
---|
| 1247 | |
---|
| 1248 | |
---|
| 1249 | /** |
---|
| 1250 | * COUNTIF |
---|
| 1251 | * |
---|
| 1252 | * Counts the number of cells that contain numbers within the list of arguments |
---|
| 1253 | * |
---|
| 1254 | * Excel Function: |
---|
| 1255 | * COUNTIF(value1[,value2[, ...]],condition) |
---|
| 1256 | * |
---|
| 1257 | * @access public |
---|
| 1258 | * @category Statistical Functions |
---|
| 1259 | * @param mixed $arg,... Data values |
---|
| 1260 | * @param string $condition The criteria that defines which cells will be counted. |
---|
| 1261 | * @return int |
---|
| 1262 | */ |
---|
| 1263 | public static function COUNTIF($aArgs,$condition) { |
---|
| 1264 | // Return value |
---|
| 1265 | $returnValue = 0; |
---|
| 1266 | |
---|
| 1267 | $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs); |
---|
| 1268 | $condition = PHPExcel_Calculation_Functions::_ifCondition($condition); |
---|
| 1269 | // Loop through arguments |
---|
| 1270 | foreach ($aArgs as $arg) { |
---|
| 1271 | if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); } |
---|
| 1272 | $testCondition = '='.$arg.$condition; |
---|
| 1273 | if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) { |
---|
| 1274 | // Is it a value within our criteria |
---|
| 1275 | ++$returnValue; |
---|
| 1276 | } |
---|
| 1277 | } |
---|
| 1278 | |
---|
| 1279 | // Return |
---|
| 1280 | return $returnValue; |
---|
| 1281 | } // function COUNTIF() |
---|
| 1282 | |
---|
| 1283 | |
---|
| 1284 | /** |
---|
| 1285 | * COVAR |
---|
| 1286 | * |
---|
| 1287 | * Returns covariance, the average of the products of deviations for each data point pair. |
---|
| 1288 | * |
---|
| 1289 | * @param array of mixed Data Series Y |
---|
| 1290 | * @param array of mixed Data Series X |
---|
| 1291 | * @return float |
---|
| 1292 | */ |
---|
| 1293 | public static function COVAR($yValues,$xValues) { |
---|
| 1294 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
| 1295 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1296 | } |
---|
| 1297 | $yValueCount = count($yValues); |
---|
| 1298 | $xValueCount = count($xValues); |
---|
| 1299 | |
---|
| 1300 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
| 1301 | return PHPExcel_Calculation_Functions::NA(); |
---|
| 1302 | } elseif ($yValueCount == 1) { |
---|
| 1303 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
| 1304 | } |
---|
| 1305 | |
---|
| 1306 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
---|
| 1307 | return $bestFitLinear->getCovariance(); |
---|
| 1308 | } // function COVAR() |
---|
| 1309 | |
---|
| 1310 | |
---|
| 1311 | /** |
---|
| 1312 | * CRITBINOM |
---|
| 1313 | * |
---|
| 1314 | * Returns the smallest value for which the cumulative binomial distribution is greater |
---|
| 1315 | * than or equal to a criterion value |
---|
| 1316 | * |
---|
| 1317 | * See http://support.microsoft.com/kb/828117/ for details of the algorithm used |
---|
| 1318 | * |
---|
| 1319 | * @param float $trials number of Bernoulli trials |
---|
| 1320 | * @param float $probability probability of a success on each trial |
---|
| 1321 | * @param float $alpha criterion value |
---|
| 1322 | * @return int |
---|
| 1323 | * |
---|
| 1324 | * @todo Warning. This implementation differs from the algorithm detailed on the MS |
---|
| 1325 | * web site in that $CumPGuessMinus1 = $CumPGuess - 1 rather than $CumPGuess - $PGuess |
---|
| 1326 | * This eliminates a potential endless loop error, but may have an adverse affect on the |
---|
| 1327 | * accuracy of the function (although all my tests have so far returned correct results). |
---|
| 1328 | * |
---|
| 1329 | */ |
---|
| 1330 | public static function CRITBINOM($trials, $probability, $alpha) { |
---|
| 1331 | $trials = floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials)); |
---|
| 1332 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
| 1333 | $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
---|
| 1334 | |
---|
| 1335 | if ((is_numeric($trials)) && (is_numeric($probability)) && (is_numeric($alpha))) { |
---|
| 1336 | if ($trials < 0) { |
---|
| 1337 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1338 | } |
---|
| 1339 | if (($probability < 0) || ($probability > 1)) { |
---|
| 1340 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1341 | } |
---|
| 1342 | if (($alpha < 0) || ($alpha > 1)) { |
---|
| 1343 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1344 | } |
---|
| 1345 | if ($alpha <= 0.5) { |
---|
| 1346 | $t = sqrt(log(1 / ($alpha * $alpha))); |
---|
| 1347 | $trialsApprox = 0 - ($t + (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t)); |
---|
| 1348 | } else { |
---|
| 1349 | $t = sqrt(log(1 / pow(1 - $alpha,2))); |
---|
| 1350 | $trialsApprox = $t - (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t); |
---|
| 1351 | } |
---|
| 1352 | $Guess = floor($trials * $probability + $trialsApprox * sqrt($trials * $probability * (1 - $probability))); |
---|
| 1353 | if ($Guess < 0) { |
---|
| 1354 | $Guess = 0; |
---|
| 1355 | } elseif ($Guess > $trials) { |
---|
| 1356 | $Guess = $trials; |
---|
| 1357 | } |
---|
| 1358 | |
---|
| 1359 | $TotalUnscaledProbability = $UnscaledPGuess = $UnscaledCumPGuess = 0.0; |
---|
| 1360 | $EssentiallyZero = 10e-12; |
---|
| 1361 | |
---|
| 1362 | $m = floor($trials * $probability); |
---|
| 1363 | ++$TotalUnscaledProbability; |
---|
| 1364 | if ($m == $Guess) { ++$UnscaledPGuess; } |
---|
| 1365 | if ($m <= $Guess) { ++$UnscaledCumPGuess; } |
---|
| 1366 | |
---|
| 1367 | $PreviousValue = 1; |
---|
| 1368 | $Done = False; |
---|
| 1369 | $k = $m + 1; |
---|
| 1370 | while ((!$Done) && ($k <= $trials)) { |
---|
| 1371 | $CurrentValue = $PreviousValue * ($trials - $k + 1) * $probability / ($k * (1 - $probability)); |
---|
| 1372 | $TotalUnscaledProbability += $CurrentValue; |
---|
| 1373 | if ($k == $Guess) { $UnscaledPGuess += $CurrentValue; } |
---|
| 1374 | if ($k <= $Guess) { $UnscaledCumPGuess += $CurrentValue; } |
---|
| 1375 | if ($CurrentValue <= $EssentiallyZero) { $Done = True; } |
---|
| 1376 | $PreviousValue = $CurrentValue; |
---|
| 1377 | ++$k; |
---|
| 1378 | } |
---|
| 1379 | |
---|
| 1380 | $PreviousValue = 1; |
---|
| 1381 | $Done = False; |
---|
| 1382 | $k = $m - 1; |
---|
| 1383 | while ((!$Done) && ($k >= 0)) { |
---|
| 1384 | $CurrentValue = $PreviousValue * $k + 1 * (1 - $probability) / (($trials - $k) * $probability); |
---|
| 1385 | $TotalUnscaledProbability += $CurrentValue; |
---|
| 1386 | if ($k == $Guess) { $UnscaledPGuess += $CurrentValue; } |
---|
| 1387 | if ($k <= $Guess) { $UnscaledCumPGuess += $CurrentValue; } |
---|
| 1388 | if ($CurrentValue <= $EssentiallyZero) { $Done = True; } |
---|
| 1389 | $PreviousValue = $CurrentValue; |
---|
| 1390 | --$k; |
---|
| 1391 | } |
---|
| 1392 | |
---|
| 1393 | $PGuess = $UnscaledPGuess / $TotalUnscaledProbability; |
---|
| 1394 | $CumPGuess = $UnscaledCumPGuess / $TotalUnscaledProbability; |
---|
| 1395 | |
---|
| 1396 | // $CumPGuessMinus1 = $CumPGuess - $PGuess; |
---|
| 1397 | $CumPGuessMinus1 = $CumPGuess - 1; |
---|
| 1398 | |
---|
| 1399 | while (True) { |
---|
| 1400 | if (($CumPGuessMinus1 < $alpha) && ($CumPGuess >= $alpha)) { |
---|
| 1401 | return $Guess; |
---|
| 1402 | } elseif (($CumPGuessMinus1 < $alpha) && ($CumPGuess < $alpha)) { |
---|
| 1403 | $PGuessPlus1 = $PGuess * ($trials - $Guess) * $probability / $Guess / (1 - $probability); |
---|
| 1404 | $CumPGuessMinus1 = $CumPGuess; |
---|
| 1405 | $CumPGuess = $CumPGuess + $PGuessPlus1; |
---|
| 1406 | $PGuess = $PGuessPlus1; |
---|
| 1407 | ++$Guess; |
---|
| 1408 | } elseif (($CumPGuessMinus1 >= $alpha) && ($CumPGuess >= $alpha)) { |
---|
| 1409 | $PGuessMinus1 = $PGuess * $Guess * (1 - $probability) / ($trials - $Guess + 1) / $probability; |
---|
| 1410 | $CumPGuess = $CumPGuessMinus1; |
---|
| 1411 | $CumPGuessMinus1 = $CumPGuessMinus1 - $PGuess; |
---|
| 1412 | $PGuess = $PGuessMinus1; |
---|
| 1413 | --$Guess; |
---|
| 1414 | } |
---|
| 1415 | } |
---|
| 1416 | } |
---|
| 1417 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1418 | } // function CRITBINOM() |
---|
| 1419 | |
---|
| 1420 | |
---|
| 1421 | /** |
---|
| 1422 | * DEVSQ |
---|
| 1423 | * |
---|
| 1424 | * Returns the sum of squares of deviations of data points from their sample mean. |
---|
| 1425 | * |
---|
| 1426 | * Excel Function: |
---|
| 1427 | * DEVSQ(value1[,value2[, ...]]) |
---|
| 1428 | * |
---|
| 1429 | * @access public |
---|
| 1430 | * @category Statistical Functions |
---|
| 1431 | * @param mixed $arg,... Data values |
---|
| 1432 | * @return float |
---|
| 1433 | */ |
---|
| 1434 | public static function DEVSQ() { |
---|
| 1435 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
| 1436 | |
---|
| 1437 | // Return value |
---|
| 1438 | $returnValue = null; |
---|
| 1439 | |
---|
| 1440 | $aMean = self::AVERAGE($aArgs); |
---|
| 1441 | if ($aMean != PHPExcel_Calculation_Functions::DIV0()) { |
---|
| 1442 | $aCount = -1; |
---|
| 1443 | foreach ($aArgs as $k => $arg) { |
---|
| 1444 | // Is it a numeric value? |
---|
| 1445 | if ((is_bool($arg)) && |
---|
| 1446 | ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
---|
| 1447 | $arg = (integer) $arg; |
---|
| 1448 | } |
---|
| 1449 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 1450 | if (is_null($returnValue)) { |
---|
| 1451 | $returnValue = pow(($arg - $aMean),2); |
---|
| 1452 | } else { |
---|
| 1453 | $returnValue += pow(($arg - $aMean),2); |
---|
| 1454 | } |
---|
| 1455 | ++$aCount; |
---|
| 1456 | } |
---|
| 1457 | } |
---|
| 1458 | |
---|
| 1459 | // Return |
---|
| 1460 | if (is_null($returnValue)) { |
---|
| 1461 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1462 | } else { |
---|
| 1463 | return $returnValue; |
---|
| 1464 | } |
---|
| 1465 | } |
---|
| 1466 | return self::NA(); |
---|
| 1467 | } // function DEVSQ() |
---|
| 1468 | |
---|
| 1469 | |
---|
| 1470 | /** |
---|
| 1471 | * EXPONDIST |
---|
| 1472 | * |
---|
| 1473 | * Returns the exponential distribution. Use EXPONDIST to model the time between events, |
---|
| 1474 | * such as how long an automated bank teller takes to deliver cash. For example, you can |
---|
| 1475 | * use EXPONDIST to determine the probability that the process takes at most 1 minute. |
---|
| 1476 | * |
---|
| 1477 | * @param float $value Value of the function |
---|
| 1478 | * @param float $lambda The parameter value |
---|
| 1479 | * @param boolean $cumulative |
---|
| 1480 | * @return float |
---|
| 1481 | */ |
---|
| 1482 | public static function EXPONDIST($value, $lambda, $cumulative) { |
---|
| 1483 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
| 1484 | $lambda = PHPExcel_Calculation_Functions::flattenSingleValue($lambda); |
---|
| 1485 | $cumulative = PHPExcel_Calculation_Functions::flattenSingleValue($cumulative); |
---|
| 1486 | |
---|
| 1487 | if ((is_numeric($value)) && (is_numeric($lambda))) { |
---|
| 1488 | if (($value < 0) || ($lambda < 0)) { |
---|
| 1489 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1490 | } |
---|
| 1491 | if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
---|
| 1492 | if ($cumulative) { |
---|
| 1493 | return 1 - exp(0-$value*$lambda); |
---|
| 1494 | } else { |
---|
| 1495 | return $lambda * exp(0-$value*$lambda); |
---|
| 1496 | } |
---|
| 1497 | } |
---|
| 1498 | } |
---|
| 1499 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1500 | } // function EXPONDIST() |
---|
| 1501 | |
---|
| 1502 | |
---|
| 1503 | /** |
---|
| 1504 | * FISHER |
---|
| 1505 | * |
---|
| 1506 | * Returns the Fisher transformation at x. This transformation produces a function that |
---|
| 1507 | * is normally distributed rather than skewed. Use this function to perform hypothesis |
---|
| 1508 | * testing on the correlation coefficient. |
---|
| 1509 | * |
---|
| 1510 | * @param float $value |
---|
| 1511 | * @return float |
---|
| 1512 | */ |
---|
| 1513 | public static function FISHER($value) { |
---|
| 1514 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
| 1515 | |
---|
| 1516 | if (is_numeric($value)) { |
---|
| 1517 | if (($value <= -1) || ($value >= 1)) { |
---|
| 1518 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1519 | } |
---|
| 1520 | return 0.5 * log((1+$value)/(1-$value)); |
---|
| 1521 | } |
---|
| 1522 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1523 | } // function FISHER() |
---|
| 1524 | |
---|
| 1525 | |
---|
| 1526 | /** |
---|
| 1527 | * FISHERINV |
---|
| 1528 | * |
---|
| 1529 | * Returns the inverse of the Fisher transformation. Use this transformation when |
---|
| 1530 | * analyzing correlations between ranges or arrays of data. If y = FISHER(x), then |
---|
| 1531 | * FISHERINV(y) = x. |
---|
| 1532 | * |
---|
| 1533 | * @param float $value |
---|
| 1534 | * @return float |
---|
| 1535 | */ |
---|
| 1536 | public static function FISHERINV($value) { |
---|
| 1537 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
| 1538 | |
---|
| 1539 | if (is_numeric($value)) { |
---|
| 1540 | return (exp(2 * $value) - 1) / (exp(2 * $value) + 1); |
---|
| 1541 | } |
---|
| 1542 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1543 | } // function FISHERINV() |
---|
| 1544 | |
---|
| 1545 | |
---|
| 1546 | /** |
---|
| 1547 | * FORECAST |
---|
| 1548 | * |
---|
| 1549 | * Calculates, or predicts, a future value by using existing values. The predicted value is a y-value for a given x-value. |
---|
| 1550 | * |
---|
| 1551 | * @param float Value of X for which we want to find Y |
---|
| 1552 | * @param array of mixed Data Series Y |
---|
| 1553 | * @param array of mixed Data Series X |
---|
| 1554 | * @return float |
---|
| 1555 | */ |
---|
| 1556 | public static function FORECAST($xValue,$yValues,$xValues) { |
---|
| 1557 | $xValue = PHPExcel_Calculation_Functions::flattenSingleValue($xValue); |
---|
| 1558 | if (!is_numeric($xValue)) { |
---|
| 1559 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1560 | } |
---|
| 1561 | |
---|
| 1562 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
| 1563 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1564 | } |
---|
| 1565 | $yValueCount = count($yValues); |
---|
| 1566 | $xValueCount = count($xValues); |
---|
| 1567 | |
---|
| 1568 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
| 1569 | return PHPExcel_Calculation_Functions::NA(); |
---|
| 1570 | } elseif ($yValueCount == 1) { |
---|
| 1571 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
| 1572 | } |
---|
| 1573 | |
---|
| 1574 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
---|
| 1575 | return $bestFitLinear->getValueOfYForX($xValue); |
---|
| 1576 | } // function FORECAST() |
---|
| 1577 | |
---|
| 1578 | |
---|
| 1579 | /** |
---|
| 1580 | * GAMMADIST |
---|
| 1581 | * |
---|
| 1582 | * Returns the gamma distribution. |
---|
| 1583 | * |
---|
| 1584 | * @param float $value Value at which you want to evaluate the distribution |
---|
| 1585 | * @param float $a Parameter to the distribution |
---|
| 1586 | * @param float $b Parameter to the distribution |
---|
| 1587 | * @param boolean $cumulative |
---|
| 1588 | * @return float |
---|
| 1589 | * |
---|
| 1590 | */ |
---|
| 1591 | public static function GAMMADIST($value,$a,$b,$cumulative) { |
---|
| 1592 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
| 1593 | $a = PHPExcel_Calculation_Functions::flattenSingleValue($a); |
---|
| 1594 | $b = PHPExcel_Calculation_Functions::flattenSingleValue($b); |
---|
| 1595 | |
---|
| 1596 | if ((is_numeric($value)) && (is_numeric($a)) && (is_numeric($b))) { |
---|
| 1597 | if (($value < 0) || ($a <= 0) || ($b <= 0)) { |
---|
| 1598 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1599 | } |
---|
| 1600 | if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
---|
| 1601 | if ($cumulative) { |
---|
| 1602 | return self::_incompleteGamma($a,$value / $b) / self::_gamma($a); |
---|
| 1603 | } else { |
---|
| 1604 | return (1 / (pow($b,$a) * self::_gamma($a))) * pow($value,$a-1) * exp(0-($value / $b)); |
---|
| 1605 | } |
---|
| 1606 | } |
---|
| 1607 | } |
---|
| 1608 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1609 | } // function GAMMADIST() |
---|
| 1610 | |
---|
| 1611 | |
---|
| 1612 | /** |
---|
| 1613 | * GAMMAINV |
---|
| 1614 | * |
---|
| 1615 | * Returns the inverse of the beta distribution. |
---|
| 1616 | * |
---|
| 1617 | * @param float $probability Probability at which you want to evaluate the distribution |
---|
| 1618 | * @param float $alpha Parameter to the distribution |
---|
| 1619 | * @param float $beta Parameter to the distribution |
---|
| 1620 | * @return float |
---|
| 1621 | * |
---|
| 1622 | */ |
---|
| 1623 | public static function GAMMAINV($probability,$alpha,$beta) { |
---|
| 1624 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
| 1625 | $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
---|
| 1626 | $beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta); |
---|
| 1627 | |
---|
| 1628 | if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta))) { |
---|
| 1629 | if (($alpha <= 0) || ($beta <= 0) || ($probability < 0) || ($probability > 1)) { |
---|
| 1630 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1631 | } |
---|
| 1632 | |
---|
| 1633 | $xLo = 0; |
---|
| 1634 | $xHi = $alpha * $beta * 5; |
---|
| 1635 | |
---|
| 1636 | $x = $xNew = 1; |
---|
| 1637 | $error = $pdf = 0; |
---|
| 1638 | $dx = 1024; |
---|
| 1639 | $i = 0; |
---|
| 1640 | |
---|
| 1641 | while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) { |
---|
| 1642 | // Apply Newton-Raphson step |
---|
| 1643 | $error = self::GAMMADIST($x, $alpha, $beta, True) - $probability; |
---|
| 1644 | if ($error < 0.0) { |
---|
| 1645 | $xLo = $x; |
---|
| 1646 | } else { |
---|
| 1647 | $xHi = $x; |
---|
| 1648 | } |
---|
| 1649 | $pdf = self::GAMMADIST($x, $alpha, $beta, False); |
---|
| 1650 | // Avoid division by zero |
---|
| 1651 | if ($pdf != 0.0) { |
---|
| 1652 | $dx = $error / $pdf; |
---|
| 1653 | $xNew = $x - $dx; |
---|
| 1654 | } |
---|
| 1655 | // If the NR fails to converge (which for example may be the |
---|
| 1656 | // case if the initial guess is too rough) we apply a bisection |
---|
| 1657 | // step to determine a more narrow interval around the root. |
---|
| 1658 | if (($xNew < $xLo) || ($xNew > $xHi) || ($pdf == 0.0)) { |
---|
| 1659 | $xNew = ($xLo + $xHi) / 2; |
---|
| 1660 | $dx = $xNew - $x; |
---|
| 1661 | } |
---|
| 1662 | $x = $xNew; |
---|
| 1663 | } |
---|
| 1664 | if ($i == MAX_ITERATIONS) { |
---|
| 1665 | return PHPExcel_Calculation_Functions::NA(); |
---|
| 1666 | } |
---|
| 1667 | return $x; |
---|
| 1668 | } |
---|
| 1669 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1670 | } // function GAMMAINV() |
---|
| 1671 | |
---|
| 1672 | |
---|
| 1673 | /** |
---|
| 1674 | * GAMMALN |
---|
| 1675 | * |
---|
| 1676 | * Returns the natural logarithm of the gamma function. |
---|
| 1677 | * |
---|
| 1678 | * @param float $value |
---|
| 1679 | * @return float |
---|
| 1680 | */ |
---|
| 1681 | public static function GAMMALN($value) { |
---|
| 1682 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
| 1683 | |
---|
| 1684 | if (is_numeric($value)) { |
---|
| 1685 | if ($value <= 0) { |
---|
| 1686 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1687 | } |
---|
| 1688 | return log(self::_gamma($value)); |
---|
| 1689 | } |
---|
| 1690 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1691 | } // function GAMMALN() |
---|
| 1692 | |
---|
| 1693 | |
---|
| 1694 | /** |
---|
| 1695 | * GEOMEAN |
---|
| 1696 | * |
---|
| 1697 | * Returns the geometric mean of an array or range of positive data. For example, you |
---|
| 1698 | * can use GEOMEAN to calculate average growth rate given compound interest with |
---|
| 1699 | * variable rates. |
---|
| 1700 | * |
---|
| 1701 | * Excel Function: |
---|
| 1702 | * GEOMEAN(value1[,value2[, ...]]) |
---|
| 1703 | * |
---|
| 1704 | * @access public |
---|
| 1705 | * @category Statistical Functions |
---|
| 1706 | * @param mixed $arg,... Data values |
---|
| 1707 | * @return float |
---|
| 1708 | */ |
---|
| 1709 | public static function GEOMEAN() { |
---|
| 1710 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
| 1711 | |
---|
| 1712 | $aMean = PHPExcel_Calculation_MathTrig::PRODUCT($aArgs); |
---|
| 1713 | if (is_numeric($aMean) && ($aMean > 0)) { |
---|
| 1714 | $aCount = self::COUNT($aArgs) ; |
---|
| 1715 | if (self::MIN($aArgs) > 0) { |
---|
| 1716 | return pow($aMean, (1 / $aCount)); |
---|
| 1717 | } |
---|
| 1718 | } |
---|
| 1719 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1720 | } // GEOMEAN() |
---|
| 1721 | |
---|
| 1722 | |
---|
| 1723 | /** |
---|
| 1724 | * GROWTH |
---|
| 1725 | * |
---|
| 1726 | * Returns values along a predicted emponential trend |
---|
| 1727 | * |
---|
| 1728 | * @param array of mixed Data Series Y |
---|
| 1729 | * @param array of mixed Data Series X |
---|
| 1730 | * @param array of mixed Values of X for which we want to find Y |
---|
| 1731 | * @param boolean A logical value specifying whether to force the intersect to equal 0. |
---|
| 1732 | * @return array of float |
---|
| 1733 | */ |
---|
| 1734 | public static function GROWTH($yValues,$xValues=array(),$newValues=array(),$const=True) { |
---|
| 1735 | $yValues = PHPExcel_Calculation_Functions::flattenArray($yValues); |
---|
| 1736 | $xValues = PHPExcel_Calculation_Functions::flattenArray($xValues); |
---|
| 1737 | $newValues = PHPExcel_Calculation_Functions::flattenArray($newValues); |
---|
| 1738 | $const = (is_null($const)) ? True : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const); |
---|
| 1739 | |
---|
| 1740 | $bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL,$yValues,$xValues,$const); |
---|
| 1741 | if (empty($newValues)) { |
---|
| 1742 | $newValues = $bestFitExponential->getXValues(); |
---|
| 1743 | } |
---|
| 1744 | |
---|
| 1745 | $returnArray = array(); |
---|
| 1746 | foreach($newValues as $xValue) { |
---|
| 1747 | $returnArray[0][] = $bestFitExponential->getValueOfYForX($xValue); |
---|
| 1748 | } |
---|
| 1749 | |
---|
| 1750 | return $returnArray; |
---|
| 1751 | } // function GROWTH() |
---|
| 1752 | |
---|
| 1753 | |
---|
| 1754 | /** |
---|
| 1755 | * HARMEAN |
---|
| 1756 | * |
---|
| 1757 | * Returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the |
---|
| 1758 | * arithmetic mean of reciprocals. |
---|
| 1759 | * |
---|
| 1760 | * Excel Function: |
---|
| 1761 | * HARMEAN(value1[,value2[, ...]]) |
---|
| 1762 | * |
---|
| 1763 | * @access public |
---|
| 1764 | * @category Statistical Functions |
---|
| 1765 | * @param mixed $arg,... Data values |
---|
| 1766 | * @return float |
---|
| 1767 | */ |
---|
| 1768 | public static function HARMEAN() { |
---|
| 1769 | // Return value |
---|
| 1770 | $returnValue = PHPExcel_Calculation_Functions::NA(); |
---|
| 1771 | |
---|
| 1772 | // Loop through arguments |
---|
| 1773 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
| 1774 | if (self::MIN($aArgs) < 0) { |
---|
| 1775 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1776 | } |
---|
| 1777 | $aCount = 0; |
---|
| 1778 | foreach ($aArgs as $arg) { |
---|
| 1779 | // Is it a numeric value? |
---|
| 1780 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 1781 | if ($arg <= 0) { |
---|
| 1782 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1783 | } |
---|
| 1784 | if (is_null($returnValue)) { |
---|
| 1785 | $returnValue = (1 / $arg); |
---|
| 1786 | } else { |
---|
| 1787 | $returnValue += (1 / $arg); |
---|
| 1788 | } |
---|
| 1789 | ++$aCount; |
---|
| 1790 | } |
---|
| 1791 | } |
---|
| 1792 | |
---|
| 1793 | // Return |
---|
| 1794 | if ($aCount > 0) { |
---|
| 1795 | return 1 / ($returnValue / $aCount); |
---|
| 1796 | } else { |
---|
| 1797 | return $returnValue; |
---|
| 1798 | } |
---|
| 1799 | } // function HARMEAN() |
---|
| 1800 | |
---|
| 1801 | |
---|
| 1802 | /** |
---|
| 1803 | * HYPGEOMDIST |
---|
| 1804 | * |
---|
| 1805 | * Returns the hypergeometric distribution. HYPGEOMDIST returns the probability of a given number of |
---|
| 1806 | * sample successes, given the sample size, population successes, and population size. |
---|
| 1807 | * |
---|
| 1808 | * @param float $sampleSuccesses Number of successes in the sample |
---|
| 1809 | * @param float $sampleNumber Size of the sample |
---|
| 1810 | * @param float $populationSuccesses Number of successes in the population |
---|
| 1811 | * @param float $populationNumber Population size |
---|
| 1812 | * @return float |
---|
| 1813 | * |
---|
| 1814 | */ |
---|
| 1815 | public static function HYPGEOMDIST($sampleSuccesses, $sampleNumber, $populationSuccesses, $populationNumber) { |
---|
| 1816 | $sampleSuccesses = floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleSuccesses)); |
---|
| 1817 | $sampleNumber = floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleNumber)); |
---|
| 1818 | $populationSuccesses = floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationSuccesses)); |
---|
| 1819 | $populationNumber = floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationNumber)); |
---|
| 1820 | |
---|
| 1821 | if ((is_numeric($sampleSuccesses)) && (is_numeric($sampleNumber)) && (is_numeric($populationSuccesses)) && (is_numeric($populationNumber))) { |
---|
| 1822 | if (($sampleSuccesses < 0) || ($sampleSuccesses > $sampleNumber) || ($sampleSuccesses > $populationSuccesses)) { |
---|
| 1823 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1824 | } |
---|
| 1825 | if (($sampleNumber <= 0) || ($sampleNumber > $populationNumber)) { |
---|
| 1826 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1827 | } |
---|
| 1828 | if (($populationSuccesses <= 0) || ($populationSuccesses > $populationNumber)) { |
---|
| 1829 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1830 | } |
---|
| 1831 | return PHPExcel_Calculation_MathTrig::COMBIN($populationSuccesses,$sampleSuccesses) * |
---|
| 1832 | PHPExcel_Calculation_MathTrig::COMBIN($populationNumber - $populationSuccesses,$sampleNumber - $sampleSuccesses) / |
---|
| 1833 | PHPExcel_Calculation_MathTrig::COMBIN($populationNumber,$sampleNumber); |
---|
| 1834 | } |
---|
| 1835 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1836 | } // function HYPGEOMDIST() |
---|
| 1837 | |
---|
| 1838 | |
---|
| 1839 | /** |
---|
| 1840 | * INTERCEPT |
---|
| 1841 | * |
---|
| 1842 | * Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values. |
---|
| 1843 | * |
---|
| 1844 | * @param array of mixed Data Series Y |
---|
| 1845 | * @param array of mixed Data Series X |
---|
| 1846 | * @return float |
---|
| 1847 | */ |
---|
| 1848 | public static function INTERCEPT($yValues,$xValues) { |
---|
| 1849 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
| 1850 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1851 | } |
---|
| 1852 | $yValueCount = count($yValues); |
---|
| 1853 | $xValueCount = count($xValues); |
---|
| 1854 | |
---|
| 1855 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
| 1856 | return PHPExcel_Calculation_Functions::NA(); |
---|
| 1857 | } elseif ($yValueCount == 1) { |
---|
| 1858 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
| 1859 | } |
---|
| 1860 | |
---|
| 1861 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
---|
| 1862 | return $bestFitLinear->getIntersect(); |
---|
| 1863 | } // function INTERCEPT() |
---|
| 1864 | |
---|
| 1865 | |
---|
| 1866 | /** |
---|
| 1867 | * KURT |
---|
| 1868 | * |
---|
| 1869 | * Returns the kurtosis of a data set. Kurtosis characterizes the relative peakedness |
---|
| 1870 | * or flatness of a distribution compared with the normal distribution. Positive |
---|
| 1871 | * kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a |
---|
| 1872 | * relatively flat distribution. |
---|
| 1873 | * |
---|
| 1874 | * @param array Data Series |
---|
| 1875 | * @return float |
---|
| 1876 | */ |
---|
| 1877 | public static function KURT() { |
---|
| 1878 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
| 1879 | $mean = self::AVERAGE($aArgs); |
---|
| 1880 | $stdDev = self::STDEV($aArgs); |
---|
| 1881 | |
---|
| 1882 | if ($stdDev > 0) { |
---|
| 1883 | $count = $summer = 0; |
---|
| 1884 | // Loop through arguments |
---|
| 1885 | foreach ($aArgs as $k => $arg) { |
---|
| 1886 | if ((is_bool($arg)) && |
---|
| 1887 | (!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
---|
| 1888 | } else { |
---|
| 1889 | // Is it a numeric value? |
---|
| 1890 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 1891 | $summer += pow((($arg - $mean) / $stdDev),4) ; |
---|
| 1892 | ++$count; |
---|
| 1893 | } |
---|
| 1894 | } |
---|
| 1895 | } |
---|
| 1896 | |
---|
| 1897 | // Return |
---|
| 1898 | if ($count > 3) { |
---|
| 1899 | return $summer * ($count * ($count+1) / (($count-1) * ($count-2) * ($count-3))) - (3 * pow($count-1,2) / (($count-2) * ($count-3))); |
---|
| 1900 | } |
---|
| 1901 | } |
---|
| 1902 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
| 1903 | } // function KURT() |
---|
| 1904 | |
---|
| 1905 | |
---|
| 1906 | /** |
---|
| 1907 | * LARGE |
---|
| 1908 | * |
---|
| 1909 | * Returns the nth largest value in a data set. You can use this function to |
---|
| 1910 | * select a value based on its relative standing. |
---|
| 1911 | * |
---|
| 1912 | * Excel Function: |
---|
| 1913 | * LARGE(value1[,value2[, ...]],entry) |
---|
| 1914 | * |
---|
| 1915 | * @access public |
---|
| 1916 | * @category Statistical Functions |
---|
| 1917 | * @param mixed $arg,... Data values |
---|
| 1918 | * @param int $entry Position (ordered from the largest) in the array or range of data to return |
---|
| 1919 | * @return float |
---|
| 1920 | * |
---|
| 1921 | */ |
---|
| 1922 | public static function LARGE() { |
---|
| 1923 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
| 1924 | |
---|
| 1925 | // Calculate |
---|
| 1926 | $entry = floor(array_pop($aArgs)); |
---|
| 1927 | |
---|
| 1928 | if ((is_numeric($entry)) && (!is_string($entry))) { |
---|
| 1929 | $mArgs = array(); |
---|
| 1930 | foreach ($aArgs as $arg) { |
---|
| 1931 | // Is it a numeric value? |
---|
| 1932 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 1933 | $mArgs[] = $arg; |
---|
| 1934 | } |
---|
| 1935 | } |
---|
| 1936 | $count = self::COUNT($mArgs); |
---|
| 1937 | $entry = floor(--$entry); |
---|
| 1938 | if (($entry < 0) || ($entry >= $count) || ($count == 0)) { |
---|
| 1939 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 1940 | } |
---|
| 1941 | rsort($mArgs); |
---|
| 1942 | return $mArgs[$entry]; |
---|
| 1943 | } |
---|
| 1944 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1945 | } // function LARGE() |
---|
| 1946 | |
---|
| 1947 | |
---|
| 1948 | /** |
---|
| 1949 | * LINEST |
---|
| 1950 | * |
---|
| 1951 | * Calculates the statistics for a line by using the "least squares" method to calculate a straight line that best fits your data, |
---|
| 1952 | * and then returns an array that describes the line. |
---|
| 1953 | * |
---|
| 1954 | * @param array of mixed Data Series Y |
---|
| 1955 | * @param array of mixed Data Series X |
---|
| 1956 | * @param boolean A logical value specifying whether to force the intersect to equal 0. |
---|
| 1957 | * @param boolean A logical value specifying whether to return additional regression statistics. |
---|
| 1958 | * @return array |
---|
| 1959 | */ |
---|
| 1960 | public static function LINEST($yValues, $xValues = NULL, $const = TRUE, $stats = FALSE) { |
---|
| 1961 | $const = (is_null($const)) ? TRUE : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const); |
---|
| 1962 | $stats = (is_null($stats)) ? FALSE : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats); |
---|
| 1963 | if (is_null($xValues)) $xValues = range(1,count(PHPExcel_Calculation_Functions::flattenArray($yValues))); |
---|
| 1964 | |
---|
| 1965 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
| 1966 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 1967 | } |
---|
| 1968 | $yValueCount = count($yValues); |
---|
| 1969 | $xValueCount = count($xValues); |
---|
| 1970 | |
---|
| 1971 | |
---|
| 1972 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
| 1973 | return PHPExcel_Calculation_Functions::NA(); |
---|
| 1974 | } elseif ($yValueCount == 1) { |
---|
| 1975 | return 0; |
---|
| 1976 | } |
---|
| 1977 | |
---|
| 1978 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues,$const); |
---|
| 1979 | if ($stats) { |
---|
| 1980 | return array( array( $bestFitLinear->getSlope(), |
---|
| 1981 | $bestFitLinear->getSlopeSE(), |
---|
| 1982 | $bestFitLinear->getGoodnessOfFit(), |
---|
| 1983 | $bestFitLinear->getF(), |
---|
| 1984 | $bestFitLinear->getSSRegression(), |
---|
| 1985 | ), |
---|
| 1986 | array( $bestFitLinear->getIntersect(), |
---|
| 1987 | $bestFitLinear->getIntersectSE(), |
---|
| 1988 | $bestFitLinear->getStdevOfResiduals(), |
---|
| 1989 | $bestFitLinear->getDFResiduals(), |
---|
| 1990 | $bestFitLinear->getSSResiduals() |
---|
| 1991 | ) |
---|
| 1992 | ); |
---|
| 1993 | } else { |
---|
| 1994 | return array( $bestFitLinear->getSlope(), |
---|
| 1995 | $bestFitLinear->getIntersect() |
---|
| 1996 | ); |
---|
| 1997 | } |
---|
| 1998 | } // function LINEST() |
---|
| 1999 | |
---|
| 2000 | |
---|
| 2001 | /** |
---|
| 2002 | * LOGEST |
---|
| 2003 | * |
---|
| 2004 | * Calculates an exponential curve that best fits the X and Y data series, |
---|
| 2005 | * and then returns an array that describes the line. |
---|
| 2006 | * |
---|
| 2007 | * @param array of mixed Data Series Y |
---|
| 2008 | * @param array of mixed Data Series X |
---|
| 2009 | * @param boolean A logical value specifying whether to force the intersect to equal 0. |
---|
| 2010 | * @param boolean A logical value specifying whether to return additional regression statistics. |
---|
| 2011 | * @return array |
---|
| 2012 | */ |
---|
| 2013 | public static function LOGEST($yValues,$xValues=null,$const=True,$stats=False) { |
---|
| 2014 | $const = (is_null($const)) ? True : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const); |
---|
| 2015 | $stats = (is_null($stats)) ? False : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats); |
---|
| 2016 | if (is_null($xValues)) $xValues = range(1,count(PHPExcel_Calculation_Functions::flattenArray($yValues))); |
---|
| 2017 | |
---|
| 2018 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
| 2019 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 2020 | } |
---|
| 2021 | $yValueCount = count($yValues); |
---|
| 2022 | $xValueCount = count($xValues); |
---|
| 2023 | |
---|
| 2024 | foreach($yValues as $value) { |
---|
| 2025 | if ($value <= 0.0) { |
---|
| 2026 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 2027 | } |
---|
| 2028 | } |
---|
| 2029 | |
---|
| 2030 | |
---|
| 2031 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
| 2032 | return PHPExcel_Calculation_Functions::NA(); |
---|
| 2033 | } elseif ($yValueCount == 1) { |
---|
| 2034 | return 1; |
---|
| 2035 | } |
---|
| 2036 | |
---|
| 2037 | $bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL,$yValues,$xValues,$const); |
---|
| 2038 | if ($stats) { |
---|
| 2039 | return array( array( $bestFitExponential->getSlope(), |
---|
| 2040 | $bestFitExponential->getSlopeSE(), |
---|
| 2041 | $bestFitExponential->getGoodnessOfFit(), |
---|
| 2042 | $bestFitExponential->getF(), |
---|
| 2043 | $bestFitExponential->getSSRegression(), |
---|
| 2044 | ), |
---|
| 2045 | array( $bestFitExponential->getIntersect(), |
---|
| 2046 | $bestFitExponential->getIntersectSE(), |
---|
| 2047 | $bestFitExponential->getStdevOfResiduals(), |
---|
| 2048 | $bestFitExponential->getDFResiduals(), |
---|
| 2049 | $bestFitExponential->getSSResiduals() |
---|
| 2050 | ) |
---|
| 2051 | ); |
---|
| 2052 | } else { |
---|
| 2053 | return array( $bestFitExponential->getSlope(), |
---|
| 2054 | $bestFitExponential->getIntersect() |
---|
| 2055 | ); |
---|
| 2056 | } |
---|
| 2057 | } // function LOGEST() |
---|
| 2058 | |
---|
| 2059 | |
---|
| 2060 | /** |
---|
| 2061 | * LOGINV |
---|
| 2062 | * |
---|
| 2063 | * Returns the inverse of the normal cumulative distribution |
---|
| 2064 | * |
---|
| 2065 | * @param float $probability |
---|
| 2066 | * @param float $mean |
---|
| 2067 | * @param float $stdDev |
---|
| 2068 | * @return float |
---|
| 2069 | * |
---|
| 2070 | * @todo Try implementing P J Acklam's refinement algorithm for greater |
---|
| 2071 | * accuracy if I can get my head round the mathematics |
---|
| 2072 | * (as described at) http://home.online.no/~pjacklam/notes/invnorm/ |
---|
| 2073 | */ |
---|
| 2074 | public static function LOGINV($probability, $mean, $stdDev) { |
---|
| 2075 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
| 2076 | $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
---|
| 2077 | $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
---|
| 2078 | |
---|
| 2079 | if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) { |
---|
| 2080 | if (($probability < 0) || ($probability > 1) || ($stdDev <= 0)) { |
---|
| 2081 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 2082 | } |
---|
| 2083 | return exp($mean + $stdDev * self::NORMSINV($probability)); |
---|
| 2084 | } |
---|
| 2085 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 2086 | } // function LOGINV() |
---|
| 2087 | |
---|
| 2088 | |
---|
| 2089 | /** |
---|
| 2090 | * LOGNORMDIST |
---|
| 2091 | * |
---|
| 2092 | * Returns the cumulative lognormal distribution of x, where ln(x) is normally distributed |
---|
| 2093 | * with parameters mean and standard_dev. |
---|
| 2094 | * |
---|
| 2095 | * @param float $value |
---|
| 2096 | * @param float $mean |
---|
| 2097 | * @param float $stdDev |
---|
| 2098 | * @return float |
---|
| 2099 | */ |
---|
| 2100 | public static function LOGNORMDIST($value, $mean, $stdDev) { |
---|
| 2101 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
| 2102 | $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
---|
| 2103 | $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
---|
| 2104 | |
---|
| 2105 | if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) { |
---|
| 2106 | if (($value <= 0) || ($stdDev <= 0)) { |
---|
| 2107 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 2108 | } |
---|
| 2109 | return self::NORMSDIST((log($value) - $mean) / $stdDev); |
---|
| 2110 | } |
---|
| 2111 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 2112 | } // function LOGNORMDIST() |
---|
| 2113 | |
---|
| 2114 | |
---|
| 2115 | /** |
---|
| 2116 | * MAX |
---|
| 2117 | * |
---|
| 2118 | * MAX returns the value of the element of the values passed that has the highest value, |
---|
| 2119 | * with negative numbers considered smaller than positive numbers. |
---|
| 2120 | * |
---|
| 2121 | * Excel Function: |
---|
| 2122 | * MAX(value1[,value2[, ...]]) |
---|
| 2123 | * |
---|
| 2124 | * @access public |
---|
| 2125 | * @category Statistical Functions |
---|
| 2126 | * @param mixed $arg,... Data values |
---|
| 2127 | * @return float |
---|
| 2128 | */ |
---|
| 2129 | public static function MAX() { |
---|
| 2130 | // Return value |
---|
| 2131 | $returnValue = null; |
---|
| 2132 | |
---|
| 2133 | // Loop through arguments |
---|
| 2134 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
| 2135 | foreach ($aArgs as $arg) { |
---|
| 2136 | // Is it a numeric value? |
---|
| 2137 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 2138 | if ((is_null($returnValue)) || ($arg > $returnValue)) { |
---|
| 2139 | $returnValue = $arg; |
---|
| 2140 | } |
---|
| 2141 | } |
---|
| 2142 | } |
---|
| 2143 | |
---|
| 2144 | // Return |
---|
| 2145 | if(is_null($returnValue)) { |
---|
| 2146 | return 0; |
---|
| 2147 | } |
---|
| 2148 | return $returnValue; |
---|
| 2149 | } // function MAX() |
---|
| 2150 | |
---|
| 2151 | |
---|
| 2152 | /** |
---|
| 2153 | * MAXA |
---|
| 2154 | * |
---|
| 2155 | * Returns the greatest value in a list of arguments, including numbers, text, and logical values |
---|
| 2156 | * |
---|
| 2157 | * Excel Function: |
---|
| 2158 | * MAXA(value1[,value2[, ...]]) |
---|
| 2159 | * |
---|
| 2160 | * @access public |
---|
| 2161 | * @category Statistical Functions |
---|
| 2162 | * @param mixed $arg,... Data values |
---|
| 2163 | * @return float |
---|
| 2164 | */ |
---|
| 2165 | public static function MAXA() { |
---|
| 2166 | // Return value |
---|
| 2167 | $returnValue = null; |
---|
| 2168 | |
---|
| 2169 | // Loop through arguments |
---|
| 2170 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
| 2171 | foreach ($aArgs as $arg) { |
---|
| 2172 | // Is it a numeric value? |
---|
| 2173 | if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { |
---|
| 2174 | if (is_bool($arg)) { |
---|
| 2175 | $arg = (integer) $arg; |
---|
| 2176 | } elseif (is_string($arg)) { |
---|
| 2177 | $arg = 0; |
---|
| 2178 | } |
---|
| 2179 | if ((is_null($returnValue)) || ($arg > $returnValue)) { |
---|
| 2180 | $returnValue = $arg; |
---|
| 2181 | } |
---|
| 2182 | } |
---|
| 2183 | } |
---|
| 2184 | |
---|
| 2185 | // Return |
---|
| 2186 | if(is_null($returnValue)) { |
---|
| 2187 | return 0; |
---|
| 2188 | } |
---|
| 2189 | return $returnValue; |
---|
| 2190 | } // function MAXA() |
---|
| 2191 | |
---|
| 2192 | |
---|
| 2193 | /** |
---|
| 2194 | * MAXIF |
---|
| 2195 | * |
---|
| 2196 | * Counts the maximum value within a range of cells that contain numbers within the list of arguments |
---|
| 2197 | * |
---|
| 2198 | * Excel Function: |
---|
| 2199 | * MAXIF(value1[,value2[, ...]],condition) |
---|
| 2200 | * |
---|
| 2201 | * @access public |
---|
| 2202 | * @category Mathematical and Trigonometric Functions |
---|
| 2203 | * @param mixed $arg,... Data values |
---|
| 2204 | * @param string $condition The criteria that defines which cells will be checked. |
---|
| 2205 | * @return float |
---|
| 2206 | */ |
---|
| 2207 | public static function MAXIF($aArgs,$condition,$sumArgs = array()) { |
---|
| 2208 | // Return value |
---|
| 2209 | $returnValue = null; |
---|
| 2210 | |
---|
| 2211 | $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs); |
---|
| 2212 | $sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs); |
---|
| 2213 | if (empty($sumArgs)) { |
---|
| 2214 | $sumArgs = $aArgs; |
---|
| 2215 | } |
---|
| 2216 | $condition = PHPExcel_Calculation_Functions::_ifCondition($condition); |
---|
| 2217 | // Loop through arguments |
---|
| 2218 | foreach ($aArgs as $key => $arg) { |
---|
| 2219 | if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); } |
---|
| 2220 | $testCondition = '='.$arg.$condition; |
---|
| 2221 | if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) { |
---|
| 2222 | if ((is_null($returnValue)) || ($arg > $returnValue)) { |
---|
| 2223 | $returnValue = $arg; |
---|
| 2224 | } |
---|
| 2225 | } |
---|
| 2226 | } |
---|
| 2227 | |
---|
| 2228 | // Return |
---|
| 2229 | return $returnValue; |
---|
| 2230 | } // function MAXIF() |
---|
| 2231 | |
---|
| 2232 | |
---|
| 2233 | /** |
---|
| 2234 | * MEDIAN |
---|
| 2235 | * |
---|
| 2236 | * Returns the median of the given numbers. The median is the number in the middle of a set of numbers. |
---|
| 2237 | * |
---|
| 2238 | * Excel Function: |
---|
| 2239 | * MEDIAN(value1[,value2[, ...]]) |
---|
| 2240 | * |
---|
| 2241 | * @access public |
---|
| 2242 | * @category Statistical Functions |
---|
| 2243 | * @param mixed $arg,... Data values |
---|
| 2244 | * @return float |
---|
| 2245 | */ |
---|
| 2246 | public static function MEDIAN() { |
---|
| 2247 | // Return value |
---|
| 2248 | $returnValue = PHPExcel_Calculation_Functions::NaN(); |
---|
| 2249 | |
---|
| 2250 | $mArgs = array(); |
---|
| 2251 | // Loop through arguments |
---|
| 2252 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
| 2253 | foreach ($aArgs as $arg) { |
---|
| 2254 | // Is it a numeric value? |
---|
| 2255 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 2256 | $mArgs[] = $arg; |
---|
| 2257 | } |
---|
| 2258 | } |
---|
| 2259 | |
---|
| 2260 | $mValueCount = count($mArgs); |
---|
| 2261 | if ($mValueCount > 0) { |
---|
| 2262 | sort($mArgs,SORT_NUMERIC); |
---|
| 2263 | $mValueCount = $mValueCount / 2; |
---|
| 2264 | if ($mValueCount == floor($mValueCount)) { |
---|
| 2265 | $returnValue = ($mArgs[$mValueCount--] + $mArgs[$mValueCount]) / 2; |
---|
| 2266 | } else { |
---|
| 2267 | $mValueCount == floor($mValueCount); |
---|
| 2268 | $returnValue = $mArgs[$mValueCount]; |
---|
| 2269 | } |
---|
| 2270 | } |
---|
| 2271 | |
---|
| 2272 | // Return |
---|
| 2273 | return $returnValue; |
---|
| 2274 | } // function MEDIAN() |
---|
| 2275 | |
---|
| 2276 | |
---|
| 2277 | /** |
---|
| 2278 | * MIN |
---|
| 2279 | * |
---|
| 2280 | * MIN returns the value of the element of the values passed that has the smallest value, |
---|
| 2281 | * with negative numbers considered smaller than positive numbers. |
---|
| 2282 | * |
---|
| 2283 | * Excel Function: |
---|
| 2284 | * MIN(value1[,value2[, ...]]) |
---|
| 2285 | * |
---|
| 2286 | * @access public |
---|
| 2287 | * @category Statistical Functions |
---|
| 2288 | * @param mixed $arg,... Data values |
---|
| 2289 | * @return float |
---|
| 2290 | */ |
---|
| 2291 | public static function MIN() { |
---|
| 2292 | // Return value |
---|
| 2293 | $returnValue = null; |
---|
| 2294 | |
---|
| 2295 | // Loop through arguments |
---|
| 2296 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
| 2297 | foreach ($aArgs as $arg) { |
---|
| 2298 | // Is it a numeric value? |
---|
| 2299 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 2300 | if ((is_null($returnValue)) || ($arg < $returnValue)) { |
---|
| 2301 | $returnValue = $arg; |
---|
| 2302 | } |
---|
| 2303 | } |
---|
| 2304 | } |
---|
| 2305 | |
---|
| 2306 | // Return |
---|
| 2307 | if(is_null($returnValue)) { |
---|
| 2308 | return 0; |
---|
| 2309 | } |
---|
| 2310 | return $returnValue; |
---|
| 2311 | } // function MIN() |
---|
| 2312 | |
---|
| 2313 | |
---|
| 2314 | /** |
---|
| 2315 | * MINA |
---|
| 2316 | * |
---|
| 2317 | * Returns the smallest value in a list of arguments, including numbers, text, and logical values |
---|
| 2318 | * |
---|
| 2319 | * Excel Function: |
---|
| 2320 | * MINA(value1[,value2[, ...]]) |
---|
| 2321 | * |
---|
| 2322 | * @access public |
---|
| 2323 | * @category Statistical Functions |
---|
| 2324 | * @param mixed $arg,... Data values |
---|
| 2325 | * @return float |
---|
| 2326 | */ |
---|
| 2327 | public static function MINA() { |
---|
| 2328 | // Return value |
---|
| 2329 | $returnValue = null; |
---|
| 2330 | |
---|
| 2331 | // Loop through arguments |
---|
| 2332 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
| 2333 | foreach ($aArgs as $arg) { |
---|
| 2334 | // Is it a numeric value? |
---|
| 2335 | if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { |
---|
| 2336 | if (is_bool($arg)) { |
---|
| 2337 | $arg = (integer) $arg; |
---|
| 2338 | } elseif (is_string($arg)) { |
---|
| 2339 | $arg = 0; |
---|
| 2340 | } |
---|
| 2341 | if ((is_null($returnValue)) || ($arg < $returnValue)) { |
---|
| 2342 | $returnValue = $arg; |
---|
| 2343 | } |
---|
| 2344 | } |
---|
| 2345 | } |
---|
| 2346 | |
---|
| 2347 | // Return |
---|
| 2348 | if(is_null($returnValue)) { |
---|
| 2349 | return 0; |
---|
| 2350 | } |
---|
| 2351 | return $returnValue; |
---|
| 2352 | } // function MINA() |
---|
| 2353 | |
---|
| 2354 | |
---|
| 2355 | /** |
---|
| 2356 | * MINIF |
---|
| 2357 | * |
---|
| 2358 | * Returns the minimum value within a range of cells that contain numbers within the list of arguments |
---|
| 2359 | * |
---|
| 2360 | * Excel Function: |
---|
| 2361 | * MINIF(value1[,value2[, ...]],condition) |
---|
| 2362 | * |
---|
| 2363 | * @access public |
---|
| 2364 | * @category Mathematical and Trigonometric Functions |
---|
| 2365 | * @param mixed $arg,... Data values |
---|
| 2366 | * @param string $condition The criteria that defines which cells will be checked. |
---|
| 2367 | * @return float |
---|
| 2368 | */ |
---|
| 2369 | public static function MINIF($aArgs,$condition,$sumArgs = array()) { |
---|
| 2370 | // Return value |
---|
| 2371 | $returnValue = null; |
---|
| 2372 | |
---|
| 2373 | $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs); |
---|
| 2374 | $sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs); |
---|
| 2375 | if (empty($sumArgs)) { |
---|
| 2376 | $sumArgs = $aArgs; |
---|
| 2377 | } |
---|
| 2378 | $condition = PHPExcel_Calculation_Functions::_ifCondition($condition); |
---|
| 2379 | // Loop through arguments |
---|
| 2380 | foreach ($aArgs as $key => $arg) { |
---|
| 2381 | if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); } |
---|
| 2382 | $testCondition = '='.$arg.$condition; |
---|
| 2383 | if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) { |
---|
| 2384 | if ((is_null($returnValue)) || ($arg < $returnValue)) { |
---|
| 2385 | $returnValue = $arg; |
---|
| 2386 | } |
---|
| 2387 | } |
---|
| 2388 | } |
---|
| 2389 | |
---|
| 2390 | // Return |
---|
| 2391 | return $returnValue; |
---|
| 2392 | } // function MINIF() |
---|
| 2393 | |
---|
| 2394 | |
---|
| 2395 | // |
---|
| 2396 | // Special variant of array_count_values that isn't limited to strings and integers, |
---|
| 2397 | // but can work with floating point numbers as values |
---|
| 2398 | // |
---|
| 2399 | private static function _modeCalc($data) { |
---|
| 2400 | $frequencyArray = array(); |
---|
| 2401 | foreach($data as $datum) { |
---|
| 2402 | $found = False; |
---|
| 2403 | foreach($frequencyArray as $key => $value) { |
---|
| 2404 | if ((string) $value['value'] == (string) $datum) { |
---|
| 2405 | ++$frequencyArray[$key]['frequency']; |
---|
| 2406 | $found = True; |
---|
| 2407 | break; |
---|
| 2408 | } |
---|
| 2409 | } |
---|
| 2410 | if (!$found) { |
---|
| 2411 | $frequencyArray[] = array('value' => $datum, |
---|
| 2412 | 'frequency' => 1 ); |
---|
| 2413 | } |
---|
| 2414 | } |
---|
| 2415 | |
---|
| 2416 | foreach($frequencyArray as $key => $value) { |
---|
| 2417 | $frequencyList[$key] = $value['frequency']; |
---|
| 2418 | $valueList[$key] = $value['value']; |
---|
| 2419 | } |
---|
| 2420 | array_multisort($frequencyList, SORT_DESC, $valueList, SORT_ASC, SORT_NUMERIC, $frequencyArray); |
---|
| 2421 | |
---|
| 2422 | if ($frequencyArray[0]['frequency'] == 1) { |
---|
| 2423 | return PHPExcel_Calculation_Functions::NA(); |
---|
| 2424 | } |
---|
| 2425 | return $frequencyArray[0]['value']; |
---|
| 2426 | } // function _modeCalc() |
---|
| 2427 | |
---|
| 2428 | |
---|
| 2429 | /** |
---|
| 2430 | * MODE |
---|
| 2431 | * |
---|
| 2432 | * Returns the most frequently occurring, or repetitive, value in an array or range of data |
---|
| 2433 | * |
---|
| 2434 | * Excel Function: |
---|
| 2435 | * MODE(value1[,value2[, ...]]) |
---|
| 2436 | * |
---|
| 2437 | * @access public |
---|
| 2438 | * @category Statistical Functions |
---|
| 2439 | * @param mixed $arg,... Data values |
---|
| 2440 | * @return float |
---|
| 2441 | */ |
---|
| 2442 | public static function MODE() { |
---|
| 2443 | // Return value |
---|
| 2444 | $returnValue = PHPExcel_Calculation_Functions::NA(); |
---|
| 2445 | |
---|
| 2446 | // Loop through arguments |
---|
| 2447 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
| 2448 | |
---|
| 2449 | $mArgs = array(); |
---|
| 2450 | foreach ($aArgs as $arg) { |
---|
| 2451 | // Is it a numeric value? |
---|
| 2452 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 2453 | $mArgs[] = $arg; |
---|
| 2454 | } |
---|
| 2455 | } |
---|
| 2456 | |
---|
| 2457 | if (!empty($mArgs)) { |
---|
| 2458 | return self::_modeCalc($mArgs); |
---|
| 2459 | } |
---|
| 2460 | |
---|
| 2461 | // Return |
---|
| 2462 | return $returnValue; |
---|
| 2463 | } // function MODE() |
---|
| 2464 | |
---|
| 2465 | |
---|
| 2466 | /** |
---|
| 2467 | * NEGBINOMDIST |
---|
| 2468 | * |
---|
| 2469 | * Returns the negative binomial distribution. NEGBINOMDIST returns the probability that |
---|
| 2470 | * there will be number_f failures before the number_s-th success, when the constant |
---|
| 2471 | * probability of a success is probability_s. This function is similar to the binomial |
---|
| 2472 | * distribution, except that the number of successes is fixed, and the number of trials is |
---|
| 2473 | * variable. Like the binomial, trials are assumed to be independent. |
---|
| 2474 | * |
---|
| 2475 | * @param float $failures Number of Failures |
---|
| 2476 | * @param float $successes Threshold number of Successes |
---|
| 2477 | * @param float $probability Probability of success on each trial |
---|
| 2478 | * @return float |
---|
| 2479 | * |
---|
| 2480 | */ |
---|
| 2481 | public static function NEGBINOMDIST($failures, $successes, $probability) { |
---|
| 2482 | $failures = floor(PHPExcel_Calculation_Functions::flattenSingleValue($failures)); |
---|
| 2483 | $successes = floor(PHPExcel_Calculation_Functions::flattenSingleValue($successes)); |
---|
| 2484 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
| 2485 | |
---|
| 2486 | if ((is_numeric($failures)) && (is_numeric($successes)) && (is_numeric($probability))) { |
---|
| 2487 | if (($failures < 0) || ($successes < 1)) { |
---|
| 2488 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 2489 | } |
---|
| 2490 | if (($probability < 0) || ($probability > 1)) { |
---|
| 2491 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 2492 | } |
---|
| 2493 | if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) { |
---|
| 2494 | if (($failures + $successes - 1) <= 0) { |
---|
| 2495 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 2496 | } |
---|
| 2497 | } |
---|
| 2498 | return (PHPExcel_Calculation_MathTrig::COMBIN($failures + $successes - 1,$successes - 1)) * (pow($probability,$successes)) * (pow(1 - $probability,$failures)) ; |
---|
| 2499 | } |
---|
| 2500 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 2501 | } // function NEGBINOMDIST() |
---|
| 2502 | |
---|
| 2503 | |
---|
| 2504 | /** |
---|
| 2505 | * NORMDIST |
---|
| 2506 | * |
---|
| 2507 | * Returns the normal distribution for the specified mean and standard deviation. This |
---|
| 2508 | * function has a very wide range of applications in statistics, including hypothesis |
---|
| 2509 | * testing. |
---|
| 2510 | * |
---|
| 2511 | * @param float $value |
---|
| 2512 | * @param float $mean Mean Value |
---|
| 2513 | * @param float $stdDev Standard Deviation |
---|
| 2514 | * @param boolean $cumulative |
---|
| 2515 | * @return float |
---|
| 2516 | * |
---|
| 2517 | */ |
---|
| 2518 | public static function NORMDIST($value, $mean, $stdDev, $cumulative) { |
---|
| 2519 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
| 2520 | $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
---|
| 2521 | $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
---|
| 2522 | |
---|
| 2523 | if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) { |
---|
| 2524 | if ($stdDev < 0) { |
---|
| 2525 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 2526 | } |
---|
| 2527 | if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
---|
| 2528 | if ($cumulative) { |
---|
| 2529 | return 0.5 * (1 + PHPExcel_Calculation_Engineering::_erfVal(($value - $mean) / ($stdDev * sqrt(2)))); |
---|
| 2530 | } else { |
---|
| 2531 | return (1 / (SQRT2PI * $stdDev)) * exp(0 - (pow($value - $mean,2) / (2 * ($stdDev * $stdDev)))); |
---|
| 2532 | } |
---|
| 2533 | } |
---|
| 2534 | } |
---|
| 2535 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 2536 | } // function NORMDIST() |
---|
| 2537 | |
---|
| 2538 | |
---|
| 2539 | /** |
---|
| 2540 | * NORMINV |
---|
| 2541 | * |
---|
| 2542 | * Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation. |
---|
| 2543 | * |
---|
| 2544 | * @param float $value |
---|
| 2545 | * @param float $mean Mean Value |
---|
| 2546 | * @param float $stdDev Standard Deviation |
---|
| 2547 | * @return float |
---|
| 2548 | * |
---|
| 2549 | */ |
---|
| 2550 | public static function NORMINV($probability,$mean,$stdDev) { |
---|
| 2551 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
| 2552 | $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
---|
| 2553 | $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
---|
| 2554 | |
---|
| 2555 | if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) { |
---|
| 2556 | if (($probability < 0) || ($probability > 1)) { |
---|
| 2557 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 2558 | } |
---|
| 2559 | if ($stdDev < 0) { |
---|
| 2560 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 2561 | } |
---|
| 2562 | return (self::_inverse_ncdf($probability) * $stdDev) + $mean; |
---|
| 2563 | } |
---|
| 2564 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 2565 | } // function NORMINV() |
---|
| 2566 | |
---|
| 2567 | |
---|
| 2568 | /** |
---|
| 2569 | * NORMSDIST |
---|
| 2570 | * |
---|
| 2571 | * Returns the standard normal cumulative distribution function. The distribution has |
---|
| 2572 | * a mean of 0 (zero) and a standard deviation of one. Use this function in place of a |
---|
| 2573 | * table of standard normal curve areas. |
---|
| 2574 | * |
---|
| 2575 | * @param float $value |
---|
| 2576 | * @return float |
---|
| 2577 | */ |
---|
| 2578 | public static function NORMSDIST($value) { |
---|
| 2579 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
| 2580 | |
---|
| 2581 | return self::NORMDIST($value, 0, 1, True); |
---|
| 2582 | } // function NORMSDIST() |
---|
| 2583 | |
---|
| 2584 | |
---|
| 2585 | /** |
---|
| 2586 | * NORMSINV |
---|
| 2587 | * |
---|
| 2588 | * Returns the inverse of the standard normal cumulative distribution |
---|
| 2589 | * |
---|
| 2590 | * @param float $value |
---|
| 2591 | * @return float |
---|
| 2592 | */ |
---|
| 2593 | public static function NORMSINV($value) { |
---|
| 2594 | return self::NORMINV($value, 0, 1); |
---|
| 2595 | } // function NORMSINV() |
---|
| 2596 | |
---|
| 2597 | |
---|
| 2598 | /** |
---|
| 2599 | * PERCENTILE |
---|
| 2600 | * |
---|
| 2601 | * Returns the nth percentile of values in a range.. |
---|
| 2602 | * |
---|
| 2603 | * Excel Function: |
---|
| 2604 | * PERCENTILE(value1[,value2[, ...]],entry) |
---|
| 2605 | * |
---|
| 2606 | * @access public |
---|
| 2607 | * @category Statistical Functions |
---|
| 2608 | * @param mixed $arg,... Data values |
---|
| 2609 | * @param float $entry Percentile value in the range 0..1, inclusive. |
---|
| 2610 | * @return float |
---|
| 2611 | */ |
---|
| 2612 | public static function PERCENTILE() { |
---|
| 2613 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
| 2614 | |
---|
| 2615 | // Calculate |
---|
| 2616 | $entry = array_pop($aArgs); |
---|
| 2617 | |
---|
| 2618 | if ((is_numeric($entry)) && (!is_string($entry))) { |
---|
| 2619 | if (($entry < 0) || ($entry > 1)) { |
---|
| 2620 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 2621 | } |
---|
| 2622 | $mArgs = array(); |
---|
| 2623 | foreach ($aArgs as $arg) { |
---|
| 2624 | // Is it a numeric value? |
---|
| 2625 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 2626 | $mArgs[] = $arg; |
---|
| 2627 | } |
---|
| 2628 | } |
---|
| 2629 | $mValueCount = count($mArgs); |
---|
| 2630 | if ($mValueCount > 0) { |
---|
| 2631 | sort($mArgs); |
---|
| 2632 | $count = self::COUNT($mArgs); |
---|
| 2633 | $index = $entry * ($count-1); |
---|
| 2634 | $iBase = floor($index); |
---|
| 2635 | if ($index == $iBase) { |
---|
| 2636 | return $mArgs[$index]; |
---|
| 2637 | } else { |
---|
| 2638 | $iNext = $iBase + 1; |
---|
| 2639 | $iProportion = $index - $iBase; |
---|
| 2640 | return $mArgs[$iBase] + (($mArgs[$iNext] - $mArgs[$iBase]) * $iProportion) ; |
---|
| 2641 | } |
---|
| 2642 | } |
---|
| 2643 | } |
---|
| 2644 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 2645 | } // function PERCENTILE() |
---|
| 2646 | |
---|
| 2647 | |
---|
| 2648 | /** |
---|
| 2649 | * PERCENTRANK |
---|
| 2650 | * |
---|
| 2651 | * Returns the rank of a value in a data set as a percentage of the data set. |
---|
| 2652 | * |
---|
| 2653 | * @param array of number An array of, or a reference to, a list of numbers. |
---|
| 2654 | * @param number The number whose rank you want to find. |
---|
| 2655 | * @param number The number of significant digits for the returned percentage value. |
---|
| 2656 | * @return float |
---|
| 2657 | */ |
---|
| 2658 | public static function PERCENTRANK($valueSet,$value,$significance=3) { |
---|
| 2659 | $valueSet = PHPExcel_Calculation_Functions::flattenArray($valueSet); |
---|
| 2660 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
| 2661 | $significance = (is_null($significance)) ? 3 : (integer) PHPExcel_Calculation_Functions::flattenSingleValue($significance); |
---|
| 2662 | |
---|
| 2663 | foreach($valueSet as $key => $valueEntry) { |
---|
| 2664 | if (!is_numeric($valueEntry)) { |
---|
| 2665 | unset($valueSet[$key]); |
---|
| 2666 | } |
---|
| 2667 | } |
---|
| 2668 | sort($valueSet,SORT_NUMERIC); |
---|
| 2669 | $valueCount = count($valueSet); |
---|
| 2670 | if ($valueCount == 0) { |
---|
| 2671 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 2672 | } |
---|
| 2673 | |
---|
| 2674 | $valueAdjustor = $valueCount - 1; |
---|
| 2675 | if (($value < $valueSet[0]) || ($value > $valueSet[$valueAdjustor])) { |
---|
| 2676 | return PHPExcel_Calculation_Functions::NA(); |
---|
| 2677 | } |
---|
| 2678 | |
---|
| 2679 | $pos = array_search($value,$valueSet); |
---|
| 2680 | if ($pos === False) { |
---|
| 2681 | $pos = 0; |
---|
| 2682 | $testValue = $valueSet[0]; |
---|
| 2683 | while ($testValue < $value) { |
---|
| 2684 | $testValue = $valueSet[++$pos]; |
---|
| 2685 | } |
---|
| 2686 | --$pos; |
---|
| 2687 | $pos += (($value - $valueSet[$pos]) / ($testValue - $valueSet[$pos])); |
---|
| 2688 | } |
---|
| 2689 | |
---|
| 2690 | return round($pos / $valueAdjustor,$significance); |
---|
| 2691 | } // function PERCENTRANK() |
---|
| 2692 | |
---|
| 2693 | |
---|
| 2694 | /** |
---|
| 2695 | * PERMUT |
---|
| 2696 | * |
---|
| 2697 | * Returns the number of permutations for a given number of objects that can be |
---|
| 2698 | * selected from number objects. A permutation is any set or subset of objects or |
---|
| 2699 | * events where internal order is significant. Permutations are different from |
---|
| 2700 | * combinations, for which the internal order is not significant. Use this function |
---|
| 2701 | * for lottery-style probability calculations. |
---|
| 2702 | * |
---|
| 2703 | * @param int $numObjs Number of different objects |
---|
| 2704 | * @param int $numInSet Number of objects in each permutation |
---|
| 2705 | * @return int Number of permutations |
---|
| 2706 | */ |
---|
| 2707 | public static function PERMUT($numObjs,$numInSet) { |
---|
| 2708 | $numObjs = PHPExcel_Calculation_Functions::flattenSingleValue($numObjs); |
---|
| 2709 | $numInSet = PHPExcel_Calculation_Functions::flattenSingleValue($numInSet); |
---|
| 2710 | |
---|
| 2711 | if ((is_numeric($numObjs)) && (is_numeric($numInSet))) { |
---|
| 2712 | $numInSet = floor($numInSet); |
---|
| 2713 | if ($numObjs < $numInSet) { |
---|
| 2714 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 2715 | } |
---|
| 2716 | return round(PHPExcel_Calculation_MathTrig::FACT($numObjs) / PHPExcel_Calculation_MathTrig::FACT($numObjs - $numInSet)); |
---|
| 2717 | } |
---|
| 2718 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 2719 | } // function PERMUT() |
---|
| 2720 | |
---|
| 2721 | |
---|
| 2722 | /** |
---|
| 2723 | * POISSON |
---|
| 2724 | * |
---|
| 2725 | * Returns the Poisson distribution. A common application of the Poisson distribution |
---|
| 2726 | * is predicting the number of events over a specific time, such as the number of |
---|
| 2727 | * cars arriving at a toll plaza in 1 minute. |
---|
| 2728 | * |
---|
| 2729 | * @param float $value |
---|
| 2730 | * @param float $mean Mean Value |
---|
| 2731 | * @param boolean $cumulative |
---|
| 2732 | * @return float |
---|
| 2733 | * |
---|
| 2734 | */ |
---|
| 2735 | public static function POISSON($value, $mean, $cumulative) { |
---|
| 2736 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
| 2737 | $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
---|
| 2738 | |
---|
| 2739 | if ((is_numeric($value)) && (is_numeric($mean))) { |
---|
| 2740 | if (($value <= 0) || ($mean <= 0)) { |
---|
| 2741 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 2742 | } |
---|
| 2743 | if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
---|
| 2744 | if ($cumulative) { |
---|
| 2745 | $summer = 0; |
---|
| 2746 | for ($i = 0; $i <= floor($value); ++$i) { |
---|
| 2747 | $summer += pow($mean,$i) / PHPExcel_Calculation_MathTrig::FACT($i); |
---|
| 2748 | } |
---|
| 2749 | return exp(0-$mean) * $summer; |
---|
| 2750 | } else { |
---|
| 2751 | return (exp(0-$mean) * pow($mean,$value)) / PHPExcel_Calculation_MathTrig::FACT($value); |
---|
| 2752 | } |
---|
| 2753 | } |
---|
| 2754 | } |
---|
| 2755 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 2756 | } // function POISSON() |
---|
| 2757 | |
---|
| 2758 | |
---|
| 2759 | /** |
---|
| 2760 | * QUARTILE |
---|
| 2761 | * |
---|
| 2762 | * Returns the quartile of a data set. |
---|
| 2763 | * |
---|
| 2764 | * Excel Function: |
---|
| 2765 | * QUARTILE(value1[,value2[, ...]],entry) |
---|
| 2766 | * |
---|
| 2767 | * @access public |
---|
| 2768 | * @category Statistical Functions |
---|
| 2769 | * @param mixed $arg,... Data values |
---|
| 2770 | * @param int $entry Quartile value in the range 1..3, inclusive. |
---|
| 2771 | * @return float |
---|
| 2772 | */ |
---|
| 2773 | public static function QUARTILE() { |
---|
| 2774 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
| 2775 | |
---|
| 2776 | // Calculate |
---|
| 2777 | $entry = floor(array_pop($aArgs)); |
---|
| 2778 | |
---|
| 2779 | if ((is_numeric($entry)) && (!is_string($entry))) { |
---|
| 2780 | $entry /= 4; |
---|
| 2781 | if (($entry < 0) || ($entry > 1)) { |
---|
| 2782 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 2783 | } |
---|
| 2784 | return self::PERCENTILE($aArgs,$entry); |
---|
| 2785 | } |
---|
| 2786 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 2787 | } // function QUARTILE() |
---|
| 2788 | |
---|
| 2789 | |
---|
| 2790 | /** |
---|
| 2791 | * RANK |
---|
| 2792 | * |
---|
| 2793 | * Returns the rank of a number in a list of numbers. |
---|
| 2794 | * |
---|
| 2795 | * @param number The number whose rank you want to find. |
---|
| 2796 | * @param array of number An array of, or a reference to, a list of numbers. |
---|
| 2797 | * @param mixed Order to sort the values in the value set |
---|
| 2798 | * @return float |
---|
| 2799 | */ |
---|
| 2800 | public static function RANK($value,$valueSet,$order=0) { |
---|
| 2801 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
| 2802 | $valueSet = PHPExcel_Calculation_Functions::flattenArray($valueSet); |
---|
| 2803 | $order = (is_null($order)) ? 0 : (integer) PHPExcel_Calculation_Functions::flattenSingleValue($order); |
---|
| 2804 | |
---|
| 2805 | foreach($valueSet as $key => $valueEntry) { |
---|
| 2806 | if (!is_numeric($valueEntry)) { |
---|
| 2807 | unset($valueSet[$key]); |
---|
| 2808 | } |
---|
| 2809 | } |
---|
| 2810 | |
---|
| 2811 | if ($order == 0) { |
---|
| 2812 | rsort($valueSet,SORT_NUMERIC); |
---|
| 2813 | } else { |
---|
| 2814 | sort($valueSet,SORT_NUMERIC); |
---|
| 2815 | } |
---|
| 2816 | $pos = array_search($value,$valueSet); |
---|
| 2817 | if ($pos === False) { |
---|
| 2818 | return PHPExcel_Calculation_Functions::NA(); |
---|
| 2819 | } |
---|
| 2820 | |
---|
| 2821 | return ++$pos; |
---|
| 2822 | } // function RANK() |
---|
| 2823 | |
---|
| 2824 | |
---|
| 2825 | /** |
---|
| 2826 | * RSQ |
---|
| 2827 | * |
---|
| 2828 | * Returns the square of the Pearson product moment correlation coefficient through data points in known_y's and known_x's. |
---|
| 2829 | * |
---|
| 2830 | * @param array of mixed Data Series Y |
---|
| 2831 | * @param array of mixed Data Series X |
---|
| 2832 | * @return float |
---|
| 2833 | */ |
---|
| 2834 | public static function RSQ($yValues,$xValues) { |
---|
| 2835 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
| 2836 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 2837 | } |
---|
| 2838 | $yValueCount = count($yValues); |
---|
| 2839 | $xValueCount = count($xValues); |
---|
| 2840 | |
---|
| 2841 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
| 2842 | return PHPExcel_Calculation_Functions::NA(); |
---|
| 2843 | } elseif ($yValueCount == 1) { |
---|
| 2844 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
| 2845 | } |
---|
| 2846 | |
---|
| 2847 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
---|
| 2848 | return $bestFitLinear->getGoodnessOfFit(); |
---|
| 2849 | } // function RSQ() |
---|
| 2850 | |
---|
| 2851 | |
---|
| 2852 | /** |
---|
| 2853 | * SKEW |
---|
| 2854 | * |
---|
| 2855 | * Returns the skewness of a distribution. Skewness characterizes the degree of asymmetry |
---|
| 2856 | * of a distribution around its mean. Positive skewness indicates a distribution with an |
---|
| 2857 | * asymmetric tail extending toward more positive values. Negative skewness indicates a |
---|
| 2858 | * distribution with an asymmetric tail extending toward more negative values. |
---|
| 2859 | * |
---|
| 2860 | * @param array Data Series |
---|
| 2861 | * @return float |
---|
| 2862 | */ |
---|
| 2863 | public static function SKEW() { |
---|
| 2864 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
| 2865 | $mean = self::AVERAGE($aArgs); |
---|
| 2866 | $stdDev = self::STDEV($aArgs); |
---|
| 2867 | |
---|
| 2868 | $count = $summer = 0; |
---|
| 2869 | // Loop through arguments |
---|
| 2870 | foreach ($aArgs as $k => $arg) { |
---|
| 2871 | if ((is_bool($arg)) && |
---|
| 2872 | (!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
---|
| 2873 | } else { |
---|
| 2874 | // Is it a numeric value? |
---|
| 2875 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 2876 | $summer += pow((($arg - $mean) / $stdDev),3) ; |
---|
| 2877 | ++$count; |
---|
| 2878 | } |
---|
| 2879 | } |
---|
| 2880 | } |
---|
| 2881 | |
---|
| 2882 | // Return |
---|
| 2883 | if ($count > 2) { |
---|
| 2884 | return $summer * ($count / (($count-1) * ($count-2))); |
---|
| 2885 | } |
---|
| 2886 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
| 2887 | } // function SKEW() |
---|
| 2888 | |
---|
| 2889 | |
---|
| 2890 | /** |
---|
| 2891 | * SLOPE |
---|
| 2892 | * |
---|
| 2893 | * Returns the slope of the linear regression line through data points in known_y's and known_x's. |
---|
| 2894 | * |
---|
| 2895 | * @param array of mixed Data Series Y |
---|
| 2896 | * @param array of mixed Data Series X |
---|
| 2897 | * @return float |
---|
| 2898 | */ |
---|
| 2899 | public static function SLOPE($yValues,$xValues) { |
---|
| 2900 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
| 2901 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 2902 | } |
---|
| 2903 | $yValueCount = count($yValues); |
---|
| 2904 | $xValueCount = count($xValues); |
---|
| 2905 | |
---|
| 2906 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
| 2907 | return PHPExcel_Calculation_Functions::NA(); |
---|
| 2908 | } elseif ($yValueCount == 1) { |
---|
| 2909 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
| 2910 | } |
---|
| 2911 | |
---|
| 2912 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
---|
| 2913 | return $bestFitLinear->getSlope(); |
---|
| 2914 | } // function SLOPE() |
---|
| 2915 | |
---|
| 2916 | |
---|
| 2917 | /** |
---|
| 2918 | * SMALL |
---|
| 2919 | * |
---|
| 2920 | * Returns the nth smallest value in a data set. You can use this function to |
---|
| 2921 | * select a value based on its relative standing. |
---|
| 2922 | * |
---|
| 2923 | * Excel Function: |
---|
| 2924 | * SMALL(value1[,value2[, ...]],entry) |
---|
| 2925 | * |
---|
| 2926 | * @access public |
---|
| 2927 | * @category Statistical Functions |
---|
| 2928 | * @param mixed $arg,... Data values |
---|
| 2929 | * @param int $entry Position (ordered from the smallest) in the array or range of data to return |
---|
| 2930 | * @return float |
---|
| 2931 | */ |
---|
| 2932 | public static function SMALL() { |
---|
| 2933 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
| 2934 | |
---|
| 2935 | // Calculate |
---|
| 2936 | $entry = array_pop($aArgs); |
---|
| 2937 | |
---|
| 2938 | if ((is_numeric($entry)) && (!is_string($entry))) { |
---|
| 2939 | $mArgs = array(); |
---|
| 2940 | foreach ($aArgs as $arg) { |
---|
| 2941 | // Is it a numeric value? |
---|
| 2942 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 2943 | $mArgs[] = $arg; |
---|
| 2944 | } |
---|
| 2945 | } |
---|
| 2946 | $count = self::COUNT($mArgs); |
---|
| 2947 | $entry = floor(--$entry); |
---|
| 2948 | if (($entry < 0) || ($entry >= $count) || ($count == 0)) { |
---|
| 2949 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 2950 | } |
---|
| 2951 | sort($mArgs); |
---|
| 2952 | return $mArgs[$entry]; |
---|
| 2953 | } |
---|
| 2954 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 2955 | } // function SMALL() |
---|
| 2956 | |
---|
| 2957 | |
---|
| 2958 | /** |
---|
| 2959 | * STANDARDIZE |
---|
| 2960 | * |
---|
| 2961 | * Returns a normalized value from a distribution characterized by mean and standard_dev. |
---|
| 2962 | * |
---|
| 2963 | * @param float $value Value to normalize |
---|
| 2964 | * @param float $mean Mean Value |
---|
| 2965 | * @param float $stdDev Standard Deviation |
---|
| 2966 | * @return float Standardized value |
---|
| 2967 | */ |
---|
| 2968 | public static function STANDARDIZE($value,$mean,$stdDev) { |
---|
| 2969 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
| 2970 | $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
---|
| 2971 | $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
---|
| 2972 | |
---|
| 2973 | if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) { |
---|
| 2974 | if ($stdDev <= 0) { |
---|
| 2975 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 2976 | } |
---|
| 2977 | return ($value - $mean) / $stdDev ; |
---|
| 2978 | } |
---|
| 2979 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 2980 | } // function STANDARDIZE() |
---|
| 2981 | |
---|
| 2982 | |
---|
| 2983 | /** |
---|
| 2984 | * STDEV |
---|
| 2985 | * |
---|
| 2986 | * Estimates standard deviation based on a sample. The standard deviation is a measure of how |
---|
| 2987 | * widely values are dispersed from the average value (the mean). |
---|
| 2988 | * |
---|
| 2989 | * Excel Function: |
---|
| 2990 | * STDEV(value1[,value2[, ...]]) |
---|
| 2991 | * |
---|
| 2992 | * @access public |
---|
| 2993 | * @category Statistical Functions |
---|
| 2994 | * @param mixed $arg,... Data values |
---|
| 2995 | * @return float |
---|
| 2996 | */ |
---|
| 2997 | public static function STDEV() { |
---|
| 2998 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
| 2999 | |
---|
| 3000 | // Return value |
---|
| 3001 | $returnValue = null; |
---|
| 3002 | |
---|
| 3003 | $aMean = self::AVERAGE($aArgs); |
---|
| 3004 | if (!is_null($aMean)) { |
---|
| 3005 | $aCount = -1; |
---|
| 3006 | foreach ($aArgs as $k => $arg) { |
---|
| 3007 | if ((is_bool($arg)) && |
---|
| 3008 | ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
---|
| 3009 | $arg = (integer) $arg; |
---|
| 3010 | } |
---|
| 3011 | // Is it a numeric value? |
---|
| 3012 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 3013 | if (is_null($returnValue)) { |
---|
| 3014 | $returnValue = pow(($arg - $aMean),2); |
---|
| 3015 | } else { |
---|
| 3016 | $returnValue += pow(($arg - $aMean),2); |
---|
| 3017 | } |
---|
| 3018 | ++$aCount; |
---|
| 3019 | } |
---|
| 3020 | } |
---|
| 3021 | |
---|
| 3022 | // Return |
---|
| 3023 | if (($aCount > 0) && ($returnValue >= 0)) { |
---|
| 3024 | return sqrt($returnValue / $aCount); |
---|
| 3025 | } |
---|
| 3026 | } |
---|
| 3027 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
| 3028 | } // function STDEV() |
---|
| 3029 | |
---|
| 3030 | |
---|
| 3031 | /** |
---|
| 3032 | * STDEVA |
---|
| 3033 | * |
---|
| 3034 | * Estimates standard deviation based on a sample, including numbers, text, and logical values |
---|
| 3035 | * |
---|
| 3036 | * Excel Function: |
---|
| 3037 | * STDEVA(value1[,value2[, ...]]) |
---|
| 3038 | * |
---|
| 3039 | * @access public |
---|
| 3040 | * @category Statistical Functions |
---|
| 3041 | * @param mixed $arg,... Data values |
---|
| 3042 | * @return float |
---|
| 3043 | */ |
---|
| 3044 | public static function STDEVA() { |
---|
| 3045 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
| 3046 | |
---|
| 3047 | // Return value |
---|
| 3048 | $returnValue = null; |
---|
| 3049 | |
---|
| 3050 | $aMean = self::AVERAGEA($aArgs); |
---|
| 3051 | if (!is_null($aMean)) { |
---|
| 3052 | $aCount = -1; |
---|
| 3053 | foreach ($aArgs as $k => $arg) { |
---|
| 3054 | if ((is_bool($arg)) && |
---|
| 3055 | (!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
---|
| 3056 | } else { |
---|
| 3057 | // Is it a numeric value? |
---|
| 3058 | if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { |
---|
| 3059 | if (is_bool($arg)) { |
---|
| 3060 | $arg = (integer) $arg; |
---|
| 3061 | } elseif (is_string($arg)) { |
---|
| 3062 | $arg = 0; |
---|
| 3063 | } |
---|
| 3064 | if (is_null($returnValue)) { |
---|
| 3065 | $returnValue = pow(($arg - $aMean),2); |
---|
| 3066 | } else { |
---|
| 3067 | $returnValue += pow(($arg - $aMean),2); |
---|
| 3068 | } |
---|
| 3069 | ++$aCount; |
---|
| 3070 | } |
---|
| 3071 | } |
---|
| 3072 | } |
---|
| 3073 | |
---|
| 3074 | // Return |
---|
| 3075 | if (($aCount > 0) && ($returnValue >= 0)) { |
---|
| 3076 | return sqrt($returnValue / $aCount); |
---|
| 3077 | } |
---|
| 3078 | } |
---|
| 3079 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
| 3080 | } // function STDEVA() |
---|
| 3081 | |
---|
| 3082 | |
---|
| 3083 | /** |
---|
| 3084 | * STDEVP |
---|
| 3085 | * |
---|
| 3086 | * Calculates standard deviation based on the entire population |
---|
| 3087 | * |
---|
| 3088 | * Excel Function: |
---|
| 3089 | * STDEVP(value1[,value2[, ...]]) |
---|
| 3090 | * |
---|
| 3091 | * @access public |
---|
| 3092 | * @category Statistical Functions |
---|
| 3093 | * @param mixed $arg,... Data values |
---|
| 3094 | * @return float |
---|
| 3095 | */ |
---|
| 3096 | public static function STDEVP() { |
---|
| 3097 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
| 3098 | |
---|
| 3099 | // Return value |
---|
| 3100 | $returnValue = null; |
---|
| 3101 | |
---|
| 3102 | $aMean = self::AVERAGE($aArgs); |
---|
| 3103 | if (!is_null($aMean)) { |
---|
| 3104 | $aCount = 0; |
---|
| 3105 | foreach ($aArgs as $k => $arg) { |
---|
| 3106 | if ((is_bool($arg)) && |
---|
| 3107 | ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
---|
| 3108 | $arg = (integer) $arg; |
---|
| 3109 | } |
---|
| 3110 | // Is it a numeric value? |
---|
| 3111 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 3112 | if (is_null($returnValue)) { |
---|
| 3113 | $returnValue = pow(($arg - $aMean),2); |
---|
| 3114 | } else { |
---|
| 3115 | $returnValue += pow(($arg - $aMean),2); |
---|
| 3116 | } |
---|
| 3117 | ++$aCount; |
---|
| 3118 | } |
---|
| 3119 | } |
---|
| 3120 | |
---|
| 3121 | // Return |
---|
| 3122 | if (($aCount > 0) && ($returnValue >= 0)) { |
---|
| 3123 | return sqrt($returnValue / $aCount); |
---|
| 3124 | } |
---|
| 3125 | } |
---|
| 3126 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
| 3127 | } // function STDEVP() |
---|
| 3128 | |
---|
| 3129 | |
---|
| 3130 | /** |
---|
| 3131 | * STDEVPA |
---|
| 3132 | * |
---|
| 3133 | * Calculates standard deviation based on the entire population, including numbers, text, and logical values |
---|
| 3134 | * |
---|
| 3135 | * Excel Function: |
---|
| 3136 | * STDEVPA(value1[,value2[, ...]]) |
---|
| 3137 | * |
---|
| 3138 | * @access public |
---|
| 3139 | * @category Statistical Functions |
---|
| 3140 | * @param mixed $arg,... Data values |
---|
| 3141 | * @return float |
---|
| 3142 | */ |
---|
| 3143 | public static function STDEVPA() { |
---|
| 3144 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
| 3145 | |
---|
| 3146 | // Return value |
---|
| 3147 | $returnValue = null; |
---|
| 3148 | |
---|
| 3149 | $aMean = self::AVERAGEA($aArgs); |
---|
| 3150 | if (!is_null($aMean)) { |
---|
| 3151 | $aCount = 0; |
---|
| 3152 | foreach ($aArgs as $k => $arg) { |
---|
| 3153 | if ((is_bool($arg)) && |
---|
| 3154 | (!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
---|
| 3155 | } else { |
---|
| 3156 | // Is it a numeric value? |
---|
| 3157 | if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { |
---|
| 3158 | if (is_bool($arg)) { |
---|
| 3159 | $arg = (integer) $arg; |
---|
| 3160 | } elseif (is_string($arg)) { |
---|
| 3161 | $arg = 0; |
---|
| 3162 | } |
---|
| 3163 | if (is_null($returnValue)) { |
---|
| 3164 | $returnValue = pow(($arg - $aMean),2); |
---|
| 3165 | } else { |
---|
| 3166 | $returnValue += pow(($arg - $aMean),2); |
---|
| 3167 | } |
---|
| 3168 | ++$aCount; |
---|
| 3169 | } |
---|
| 3170 | } |
---|
| 3171 | } |
---|
| 3172 | |
---|
| 3173 | // Return |
---|
| 3174 | if (($aCount > 0) && ($returnValue >= 0)) { |
---|
| 3175 | return sqrt($returnValue / $aCount); |
---|
| 3176 | } |
---|
| 3177 | } |
---|
| 3178 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
| 3179 | } // function STDEVPA() |
---|
| 3180 | |
---|
| 3181 | |
---|
| 3182 | /** |
---|
| 3183 | * STEYX |
---|
| 3184 | * |
---|
| 3185 | * Returns the standard error of the predicted y-value for each x in the regression. |
---|
| 3186 | * |
---|
| 3187 | * @param array of mixed Data Series Y |
---|
| 3188 | * @param array of mixed Data Series X |
---|
| 3189 | * @return float |
---|
| 3190 | */ |
---|
| 3191 | public static function STEYX($yValues,$xValues) { |
---|
| 3192 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
| 3193 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 3194 | } |
---|
| 3195 | $yValueCount = count($yValues); |
---|
| 3196 | $xValueCount = count($xValues); |
---|
| 3197 | |
---|
| 3198 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
| 3199 | return PHPExcel_Calculation_Functions::NA(); |
---|
| 3200 | } elseif ($yValueCount == 1) { |
---|
| 3201 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
| 3202 | } |
---|
| 3203 | |
---|
| 3204 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
---|
| 3205 | return $bestFitLinear->getStdevOfResiduals(); |
---|
| 3206 | } // function STEYX() |
---|
| 3207 | |
---|
| 3208 | |
---|
| 3209 | /** |
---|
| 3210 | * TDIST |
---|
| 3211 | * |
---|
| 3212 | * Returns the probability of Student's T distribution. |
---|
| 3213 | * |
---|
| 3214 | * @param float $value Value for the function |
---|
| 3215 | * @param float $degrees degrees of freedom |
---|
| 3216 | * @param float $tails number of tails (1 or 2) |
---|
| 3217 | * @return float |
---|
| 3218 | */ |
---|
| 3219 | public static function TDIST($value, $degrees, $tails) { |
---|
| 3220 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
| 3221 | $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees)); |
---|
| 3222 | $tails = floor(PHPExcel_Calculation_Functions::flattenSingleValue($tails)); |
---|
| 3223 | |
---|
| 3224 | if ((is_numeric($value)) && (is_numeric($degrees)) && (is_numeric($tails))) { |
---|
| 3225 | if (($value < 0) || ($degrees < 1) || ($tails < 1) || ($tails > 2)) { |
---|
| 3226 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 3227 | } |
---|
| 3228 | // tdist, which finds the probability that corresponds to a given value |
---|
| 3229 | // of t with k degrees of freedom. This algorithm is translated from a |
---|
| 3230 | // pascal function on p81 of "Statistical Computing in Pascal" by D |
---|
| 3231 | // Cooke, A H Craven & G M Clark (1985: Edward Arnold (Pubs.) Ltd: |
---|
| 3232 | // London). The above Pascal algorithm is itself a translation of the |
---|
| 3233 | // fortran algoritm "AS 3" by B E Cooper of the Atlas Computer |
---|
| 3234 | // Laboratory as reported in (among other places) "Applied Statistics |
---|
| 3235 | // Algorithms", editied by P Griffiths and I D Hill (1985; Ellis |
---|
| 3236 | // Horwood Ltd.; W. Sussex, England). |
---|
| 3237 | $tterm = $degrees; |
---|
| 3238 | $ttheta = atan2($value,sqrt($tterm)); |
---|
| 3239 | $tc = cos($ttheta); |
---|
| 3240 | $ts = sin($ttheta); |
---|
| 3241 | $tsum = 0; |
---|
| 3242 | |
---|
| 3243 | if (($degrees % 2) == 1) { |
---|
| 3244 | $ti = 3; |
---|
| 3245 | $tterm = $tc; |
---|
| 3246 | } else { |
---|
| 3247 | $ti = 2; |
---|
| 3248 | $tterm = 1; |
---|
| 3249 | } |
---|
| 3250 | |
---|
| 3251 | $tsum = $tterm; |
---|
| 3252 | while ($ti < $degrees) { |
---|
| 3253 | $tterm *= $tc * $tc * ($ti - 1) / $ti; |
---|
| 3254 | $tsum += $tterm; |
---|
| 3255 | $ti += 2; |
---|
| 3256 | } |
---|
| 3257 | $tsum *= $ts; |
---|
| 3258 | if (($degrees % 2) == 1) { $tsum = M_2DIVPI * ($tsum + $ttheta); } |
---|
| 3259 | $tValue = 0.5 * (1 + $tsum); |
---|
| 3260 | if ($tails == 1) { |
---|
| 3261 | return 1 - abs($tValue); |
---|
| 3262 | } else { |
---|
| 3263 | return 1 - abs((1 - $tValue) - $tValue); |
---|
| 3264 | } |
---|
| 3265 | } |
---|
| 3266 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 3267 | } // function TDIST() |
---|
| 3268 | |
---|
| 3269 | |
---|
| 3270 | /** |
---|
| 3271 | * TINV |
---|
| 3272 | * |
---|
| 3273 | * Returns the one-tailed probability of the chi-squared distribution. |
---|
| 3274 | * |
---|
| 3275 | * @param float $probability Probability for the function |
---|
| 3276 | * @param float $degrees degrees of freedom |
---|
| 3277 | * @return float |
---|
| 3278 | */ |
---|
| 3279 | public static function TINV($probability, $degrees) { |
---|
| 3280 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
| 3281 | $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees)); |
---|
| 3282 | |
---|
| 3283 | if ((is_numeric($probability)) && (is_numeric($degrees))) { |
---|
| 3284 | $xLo = 100; |
---|
| 3285 | $xHi = 0; |
---|
| 3286 | |
---|
| 3287 | $x = $xNew = 1; |
---|
| 3288 | $dx = 1; |
---|
| 3289 | $i = 0; |
---|
| 3290 | |
---|
| 3291 | while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) { |
---|
| 3292 | // Apply Newton-Raphson step |
---|
| 3293 | $result = self::TDIST($x, $degrees, 2); |
---|
| 3294 | $error = $result - $probability; |
---|
| 3295 | if ($error == 0.0) { |
---|
| 3296 | $dx = 0; |
---|
| 3297 | } elseif ($error < 0.0) { |
---|
| 3298 | $xLo = $x; |
---|
| 3299 | } else { |
---|
| 3300 | $xHi = $x; |
---|
| 3301 | } |
---|
| 3302 | // Avoid division by zero |
---|
| 3303 | if ($result != 0.0) { |
---|
| 3304 | $dx = $error / $result; |
---|
| 3305 | $xNew = $x - $dx; |
---|
| 3306 | } |
---|
| 3307 | // If the NR fails to converge (which for example may be the |
---|
| 3308 | // case if the initial guess is too rough) we apply a bisection |
---|
| 3309 | // step to determine a more narrow interval around the root. |
---|
| 3310 | if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) { |
---|
| 3311 | $xNew = ($xLo + $xHi) / 2; |
---|
| 3312 | $dx = $xNew - $x; |
---|
| 3313 | } |
---|
| 3314 | $x = $xNew; |
---|
| 3315 | } |
---|
| 3316 | if ($i == MAX_ITERATIONS) { |
---|
| 3317 | return PHPExcel_Calculation_Functions::NA(); |
---|
| 3318 | } |
---|
| 3319 | return round($x,12); |
---|
| 3320 | } |
---|
| 3321 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 3322 | } // function TINV() |
---|
| 3323 | |
---|
| 3324 | |
---|
| 3325 | /** |
---|
| 3326 | * TREND |
---|
| 3327 | * |
---|
| 3328 | * Returns values along a linear trend |
---|
| 3329 | * |
---|
| 3330 | * @param array of mixed Data Series Y |
---|
| 3331 | * @param array of mixed Data Series X |
---|
| 3332 | * @param array of mixed Values of X for which we want to find Y |
---|
| 3333 | * @param boolean A logical value specifying whether to force the intersect to equal 0. |
---|
| 3334 | * @return array of float |
---|
| 3335 | */ |
---|
| 3336 | public static function TREND($yValues,$xValues=array(),$newValues=array(),$const=True) { |
---|
| 3337 | $yValues = PHPExcel_Calculation_Functions::flattenArray($yValues); |
---|
| 3338 | $xValues = PHPExcel_Calculation_Functions::flattenArray($xValues); |
---|
| 3339 | $newValues = PHPExcel_Calculation_Functions::flattenArray($newValues); |
---|
| 3340 | $const = (is_null($const)) ? True : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const); |
---|
| 3341 | |
---|
| 3342 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues,$const); |
---|
| 3343 | if (empty($newValues)) { |
---|
| 3344 | $newValues = $bestFitLinear->getXValues(); |
---|
| 3345 | } |
---|
| 3346 | |
---|
| 3347 | $returnArray = array(); |
---|
| 3348 | foreach($newValues as $xValue) { |
---|
| 3349 | $returnArray[0][] = $bestFitLinear->getValueOfYForX($xValue); |
---|
| 3350 | } |
---|
| 3351 | |
---|
| 3352 | return $returnArray; |
---|
| 3353 | } // function TREND() |
---|
| 3354 | |
---|
| 3355 | |
---|
| 3356 | /** |
---|
| 3357 | * TRIMMEAN |
---|
| 3358 | * |
---|
| 3359 | * Returns the mean of the interior of a data set. TRIMMEAN calculates the mean |
---|
| 3360 | * taken by excluding a percentage of data points from the top and bottom tails |
---|
| 3361 | * of a data set. |
---|
| 3362 | * |
---|
| 3363 | * Excel Function: |
---|
| 3364 | * TRIMEAN(value1[,value2[, ...]],$discard) |
---|
| 3365 | * |
---|
| 3366 | * @access public |
---|
| 3367 | * @category Statistical Functions |
---|
| 3368 | * @param mixed $arg,... Data values |
---|
| 3369 | * @param float $discard Percentage to discard |
---|
| 3370 | * @return float |
---|
| 3371 | */ |
---|
| 3372 | public static function TRIMMEAN() { |
---|
| 3373 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
| 3374 | |
---|
| 3375 | // Calculate |
---|
| 3376 | $percent = array_pop($aArgs); |
---|
| 3377 | |
---|
| 3378 | if ((is_numeric($percent)) && (!is_string($percent))) { |
---|
| 3379 | if (($percent < 0) || ($percent > 1)) { |
---|
| 3380 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 3381 | } |
---|
| 3382 | $mArgs = array(); |
---|
| 3383 | foreach ($aArgs as $arg) { |
---|
| 3384 | // Is it a numeric value? |
---|
| 3385 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 3386 | $mArgs[] = $arg; |
---|
| 3387 | } |
---|
| 3388 | } |
---|
| 3389 | $discard = floor(self::COUNT($mArgs) * $percent / 2); |
---|
| 3390 | sort($mArgs); |
---|
| 3391 | for ($i=0; $i < $discard; ++$i) { |
---|
| 3392 | array_pop($mArgs); |
---|
| 3393 | array_shift($mArgs); |
---|
| 3394 | } |
---|
| 3395 | return self::AVERAGE($mArgs); |
---|
| 3396 | } |
---|
| 3397 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 3398 | } // function TRIMMEAN() |
---|
| 3399 | |
---|
| 3400 | |
---|
| 3401 | /** |
---|
| 3402 | * VARFunc |
---|
| 3403 | * |
---|
| 3404 | * Estimates variance based on a sample. |
---|
| 3405 | * |
---|
| 3406 | * Excel Function: |
---|
| 3407 | * VAR(value1[,value2[, ...]]) |
---|
| 3408 | * |
---|
| 3409 | * @access public |
---|
| 3410 | * @category Statistical Functions |
---|
| 3411 | * @param mixed $arg,... Data values |
---|
| 3412 | * @return float |
---|
| 3413 | */ |
---|
| 3414 | public static function VARFunc() { |
---|
| 3415 | // Return value |
---|
| 3416 | $returnValue = PHPExcel_Calculation_Functions::DIV0(); |
---|
| 3417 | |
---|
| 3418 | $summerA = $summerB = 0; |
---|
| 3419 | |
---|
| 3420 | // Loop through arguments |
---|
| 3421 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
| 3422 | $aCount = 0; |
---|
| 3423 | foreach ($aArgs as $arg) { |
---|
| 3424 | if (is_bool($arg)) { $arg = (integer) $arg; } |
---|
| 3425 | // Is it a numeric value? |
---|
| 3426 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 3427 | $summerA += ($arg * $arg); |
---|
| 3428 | $summerB += $arg; |
---|
| 3429 | ++$aCount; |
---|
| 3430 | } |
---|
| 3431 | } |
---|
| 3432 | |
---|
| 3433 | // Return |
---|
| 3434 | if ($aCount > 1) { |
---|
| 3435 | $summerA *= $aCount; |
---|
| 3436 | $summerB *= $summerB; |
---|
| 3437 | $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1)); |
---|
| 3438 | } |
---|
| 3439 | return $returnValue; |
---|
| 3440 | } // function VARFunc() |
---|
| 3441 | |
---|
| 3442 | |
---|
| 3443 | /** |
---|
| 3444 | * VARA |
---|
| 3445 | * |
---|
| 3446 | * Estimates variance based on a sample, including numbers, text, and logical values |
---|
| 3447 | * |
---|
| 3448 | * Excel Function: |
---|
| 3449 | * VARA(value1[,value2[, ...]]) |
---|
| 3450 | * |
---|
| 3451 | * @access public |
---|
| 3452 | * @category Statistical Functions |
---|
| 3453 | * @param mixed $arg,... Data values |
---|
| 3454 | * @return float |
---|
| 3455 | */ |
---|
| 3456 | public static function VARA() { |
---|
| 3457 | // Return value |
---|
| 3458 | $returnValue = PHPExcel_Calculation_Functions::DIV0(); |
---|
| 3459 | |
---|
| 3460 | $summerA = $summerB = 0; |
---|
| 3461 | |
---|
| 3462 | // Loop through arguments |
---|
| 3463 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
| 3464 | $aCount = 0; |
---|
| 3465 | foreach ($aArgs as $k => $arg) { |
---|
| 3466 | if ((is_string($arg)) && |
---|
| 3467 | (PHPExcel_Calculation_Functions::isValue($k))) { |
---|
| 3468 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 3469 | } elseif ((is_string($arg)) && |
---|
| 3470 | (!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
---|
| 3471 | } else { |
---|
| 3472 | // Is it a numeric value? |
---|
| 3473 | if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { |
---|
| 3474 | if (is_bool($arg)) { |
---|
| 3475 | $arg = (integer) $arg; |
---|
| 3476 | } elseif (is_string($arg)) { |
---|
| 3477 | $arg = 0; |
---|
| 3478 | } |
---|
| 3479 | $summerA += ($arg * $arg); |
---|
| 3480 | $summerB += $arg; |
---|
| 3481 | ++$aCount; |
---|
| 3482 | } |
---|
| 3483 | } |
---|
| 3484 | } |
---|
| 3485 | |
---|
| 3486 | // Return |
---|
| 3487 | if ($aCount > 1) { |
---|
| 3488 | $summerA *= $aCount; |
---|
| 3489 | $summerB *= $summerB; |
---|
| 3490 | $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1)); |
---|
| 3491 | } |
---|
| 3492 | return $returnValue; |
---|
| 3493 | } // function VARA() |
---|
| 3494 | |
---|
| 3495 | |
---|
| 3496 | /** |
---|
| 3497 | * VARP |
---|
| 3498 | * |
---|
| 3499 | * Calculates variance based on the entire population |
---|
| 3500 | * |
---|
| 3501 | * Excel Function: |
---|
| 3502 | * VARP(value1[,value2[, ...]]) |
---|
| 3503 | * |
---|
| 3504 | * @access public |
---|
| 3505 | * @category Statistical Functions |
---|
| 3506 | * @param mixed $arg,... Data values |
---|
| 3507 | * @return float |
---|
| 3508 | */ |
---|
| 3509 | public static function VARP() { |
---|
| 3510 | // Return value |
---|
| 3511 | $returnValue = PHPExcel_Calculation_Functions::DIV0(); |
---|
| 3512 | |
---|
| 3513 | $summerA = $summerB = 0; |
---|
| 3514 | |
---|
| 3515 | // Loop through arguments |
---|
| 3516 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
| 3517 | $aCount = 0; |
---|
| 3518 | foreach ($aArgs as $arg) { |
---|
| 3519 | if (is_bool($arg)) { $arg = (integer) $arg; } |
---|
| 3520 | // Is it a numeric value? |
---|
| 3521 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
| 3522 | $summerA += ($arg * $arg); |
---|
| 3523 | $summerB += $arg; |
---|
| 3524 | ++$aCount; |
---|
| 3525 | } |
---|
| 3526 | } |
---|
| 3527 | |
---|
| 3528 | // Return |
---|
| 3529 | if ($aCount > 0) { |
---|
| 3530 | $summerA *= $aCount; |
---|
| 3531 | $summerB *= $summerB; |
---|
| 3532 | $returnValue = ($summerA - $summerB) / ($aCount * $aCount); |
---|
| 3533 | } |
---|
| 3534 | return $returnValue; |
---|
| 3535 | } // function VARP() |
---|
| 3536 | |
---|
| 3537 | |
---|
| 3538 | /** |
---|
| 3539 | * VARPA |
---|
| 3540 | * |
---|
| 3541 | * Calculates variance based on the entire population, including numbers, text, and logical values |
---|
| 3542 | * |
---|
| 3543 | * Excel Function: |
---|
| 3544 | * VARPA(value1[,value2[, ...]]) |
---|
| 3545 | * |
---|
| 3546 | * @access public |
---|
| 3547 | * @category Statistical Functions |
---|
| 3548 | * @param mixed $arg,... Data values |
---|
| 3549 | * @return float |
---|
| 3550 | */ |
---|
| 3551 | public static function VARPA() { |
---|
| 3552 | // Return value |
---|
| 3553 | $returnValue = PHPExcel_Calculation_Functions::DIV0(); |
---|
| 3554 | |
---|
| 3555 | $summerA = $summerB = 0; |
---|
| 3556 | |
---|
| 3557 | // Loop through arguments |
---|
| 3558 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
| 3559 | $aCount = 0; |
---|
| 3560 | foreach ($aArgs as $k => $arg) { |
---|
| 3561 | if ((is_string($arg)) && |
---|
| 3562 | (PHPExcel_Calculation_Functions::isValue($k))) { |
---|
| 3563 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 3564 | } elseif ((is_string($arg)) && |
---|
| 3565 | (!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
---|
| 3566 | } else { |
---|
| 3567 | // Is it a numeric value? |
---|
| 3568 | if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { |
---|
| 3569 | if (is_bool($arg)) { |
---|
| 3570 | $arg = (integer) $arg; |
---|
| 3571 | } elseif (is_string($arg)) { |
---|
| 3572 | $arg = 0; |
---|
| 3573 | } |
---|
| 3574 | $summerA += ($arg * $arg); |
---|
| 3575 | $summerB += $arg; |
---|
| 3576 | ++$aCount; |
---|
| 3577 | } |
---|
| 3578 | } |
---|
| 3579 | } |
---|
| 3580 | |
---|
| 3581 | // Return |
---|
| 3582 | if ($aCount > 0) { |
---|
| 3583 | $summerA *= $aCount; |
---|
| 3584 | $summerB *= $summerB; |
---|
| 3585 | $returnValue = ($summerA - $summerB) / ($aCount * $aCount); |
---|
| 3586 | } |
---|
| 3587 | return $returnValue; |
---|
| 3588 | } // function VARPA() |
---|
| 3589 | |
---|
| 3590 | |
---|
| 3591 | /** |
---|
| 3592 | * WEIBULL |
---|
| 3593 | * |
---|
| 3594 | * Returns the Weibull distribution. Use this distribution in reliability |
---|
| 3595 | * analysis, such as calculating a device's mean time to failure. |
---|
| 3596 | * |
---|
| 3597 | * @param float $value |
---|
| 3598 | * @param float $alpha Alpha Parameter |
---|
| 3599 | * @param float $beta Beta Parameter |
---|
| 3600 | * @param boolean $cumulative |
---|
| 3601 | * @return float |
---|
| 3602 | * |
---|
| 3603 | */ |
---|
| 3604 | public static function WEIBULL($value, $alpha, $beta, $cumulative) { |
---|
| 3605 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
| 3606 | $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
---|
| 3607 | $beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta); |
---|
| 3608 | |
---|
| 3609 | if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta))) { |
---|
| 3610 | if (($value < 0) || ($alpha <= 0) || ($beta <= 0)) { |
---|
| 3611 | return PHPExcel_Calculation_Functions::NaN(); |
---|
| 3612 | } |
---|
| 3613 | if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
---|
| 3614 | if ($cumulative) { |
---|
| 3615 | return 1 - exp(0 - pow($value / $beta,$alpha)); |
---|
| 3616 | } else { |
---|
| 3617 | return ($alpha / pow($beta,$alpha)) * pow($value,$alpha - 1) * exp(0 - pow($value / $beta,$alpha)); |
---|
| 3618 | } |
---|
| 3619 | } |
---|
| 3620 | } |
---|
| 3621 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
| 3622 | } // function WEIBULL() |
---|
| 3623 | |
---|
| 3624 | |
---|
| 3625 | /** |
---|
| 3626 | * ZTEST |
---|
| 3627 | * |
---|
| 3628 | * Returns the Weibull distribution. Use this distribution in reliability |
---|
| 3629 | * analysis, such as calculating a device's mean time to failure. |
---|
| 3630 | * |
---|
| 3631 | * @param float $dataSet |
---|
| 3632 | * @param float $m0 Alpha Parameter |
---|
| 3633 | * @param float $sigma Beta Parameter |
---|
| 3634 | * @param boolean $cumulative |
---|
| 3635 | * @return float |
---|
| 3636 | * |
---|
| 3637 | */ |
---|
| 3638 | public static function ZTEST($dataSet, $m0, $sigma = NULL) { |
---|
| 3639 | $dataSet = PHPExcel_Calculation_Functions::flattenArrayIndexed($dataSet); |
---|
| 3640 | $m0 = PHPExcel_Calculation_Functions::flattenSingleValue($m0); |
---|
| 3641 | $sigma = PHPExcel_Calculation_Functions::flattenSingleValue($sigma); |
---|
| 3642 | |
---|
| 3643 | if (is_null($sigma)) { |
---|
| 3644 | $sigma = self::STDEV($dataSet); |
---|
| 3645 | } |
---|
| 3646 | $n = count($dataSet); |
---|
| 3647 | |
---|
| 3648 | return 1 - self::NORMSDIST((self::AVERAGE($dataSet) - $m0)/($sigma/SQRT($n))); |
---|
| 3649 | } // function ZTEST() |
---|
| 3650 | |
---|
| 3651 | } // class PHPExcel_Calculation_Statistical |
---|