[289] | 1 | <?php |
---|
| 2 | /** |
---|
| 3 | * @package JAMA |
---|
| 4 | * |
---|
| 5 | * Class to obtain eigenvalues and eigenvectors of a real matrix. |
---|
| 6 | * |
---|
| 7 | * If A is symmetric, then A = V*D*V' where the eigenvalue matrix D |
---|
| 8 | * is diagonal and the eigenvector matrix V is orthogonal (i.e. |
---|
| 9 | * A = V.times(D.times(V.transpose())) and V.times(V.transpose()) |
---|
| 10 | * equals the identity matrix). |
---|
| 11 | * |
---|
| 12 | * If A is not symmetric, then the eigenvalue matrix D is block diagonal |
---|
| 13 | * with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, |
---|
| 14 | * lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The |
---|
| 15 | * columns of V represent the eigenvectors in the sense that A*V = V*D, |
---|
| 16 | * i.e. A.times(V) equals V.times(D). The matrix V may be badly |
---|
| 17 | * conditioned, or even singular, so the validity of the equation |
---|
| 18 | * A = V*D*inverse(V) depends upon V.cond(). |
---|
| 19 | * |
---|
| 20 | * @author Paul Meagher |
---|
| 21 | * @license PHP v3.0 |
---|
| 22 | * @version 1.1 |
---|
| 23 | */ |
---|
| 24 | class EigenvalueDecomposition { |
---|
| 25 | |
---|
| 26 | /** |
---|
| 27 | * Row and column dimension (square matrix). |
---|
| 28 | * @var int |
---|
| 29 | */ |
---|
| 30 | private $n; |
---|
| 31 | |
---|
| 32 | /** |
---|
| 33 | * Internal symmetry flag. |
---|
| 34 | * @var int |
---|
| 35 | */ |
---|
| 36 | private $issymmetric; |
---|
| 37 | |
---|
| 38 | /** |
---|
| 39 | * Arrays for internal storage of eigenvalues. |
---|
| 40 | * @var array |
---|
| 41 | */ |
---|
| 42 | private $d = array(); |
---|
| 43 | private $e = array(); |
---|
| 44 | |
---|
| 45 | /** |
---|
| 46 | * Array for internal storage of eigenvectors. |
---|
| 47 | * @var array |
---|
| 48 | */ |
---|
| 49 | private $V = array(); |
---|
| 50 | |
---|
| 51 | /** |
---|
| 52 | * Array for internal storage of nonsymmetric Hessenberg form. |
---|
| 53 | * @var array |
---|
| 54 | */ |
---|
| 55 | private $H = array(); |
---|
| 56 | |
---|
| 57 | /** |
---|
| 58 | * Working storage for nonsymmetric algorithm. |
---|
| 59 | * @var array |
---|
| 60 | */ |
---|
| 61 | private $ort; |
---|
| 62 | |
---|
| 63 | /** |
---|
| 64 | * Used for complex scalar division. |
---|
| 65 | * @var float |
---|
| 66 | */ |
---|
| 67 | private $cdivr; |
---|
| 68 | private $cdivi; |
---|
| 69 | |
---|
| 70 | |
---|
| 71 | /** |
---|
| 72 | * Symmetric Householder reduction to tridiagonal form. |
---|
| 73 | * |
---|
| 74 | * @access private |
---|
| 75 | */ |
---|
| 76 | private function tred2 () { |
---|
| 77 | // This is derived from the Algol procedures tred2 by |
---|
| 78 | // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for |
---|
| 79 | // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding |
---|
| 80 | // Fortran subroutine in EISPACK. |
---|
| 81 | $this->d = $this->V[$this->n-1]; |
---|
| 82 | // Householder reduction to tridiagonal form. |
---|
| 83 | for ($i = $this->n-1; $i > 0; --$i) { |
---|
| 84 | $i_ = $i -1; |
---|
| 85 | // Scale to avoid under/overflow. |
---|
| 86 | $h = $scale = 0.0; |
---|
| 87 | $scale += array_sum(array_map(abs, $this->d)); |
---|
| 88 | if ($scale == 0.0) { |
---|
| 89 | $this->e[$i] = $this->d[$i_]; |
---|
| 90 | $this->d = array_slice($this->V[$i_], 0, $i_); |
---|
| 91 | for ($j = 0; $j < $i; ++$j) { |
---|
| 92 | $this->V[$j][$i] = $this->V[$i][$j] = 0.0; |
---|
| 93 | } |
---|
| 94 | } else { |
---|
| 95 | // Generate Householder vector. |
---|
| 96 | for ($k = 0; $k < $i; ++$k) { |
---|
| 97 | $this->d[$k] /= $scale; |
---|
| 98 | $h += pow($this->d[$k], 2); |
---|
| 99 | } |
---|
| 100 | $f = $this->d[$i_]; |
---|
| 101 | $g = sqrt($h); |
---|
| 102 | if ($f > 0) { |
---|
| 103 | $g = -$g; |
---|
| 104 | } |
---|
| 105 | $this->e[$i] = $scale * $g; |
---|
| 106 | $h = $h - $f * $g; |
---|
| 107 | $this->d[$i_] = $f - $g; |
---|
| 108 | for ($j = 0; $j < $i; ++$j) { |
---|
| 109 | $this->e[$j] = 0.0; |
---|
| 110 | } |
---|
| 111 | // Apply similarity transformation to remaining columns. |
---|
| 112 | for ($j = 0; $j < $i; ++$j) { |
---|
| 113 | $f = $this->d[$j]; |
---|
| 114 | $this->V[$j][$i] = $f; |
---|
| 115 | $g = $this->e[$j] + $this->V[$j][$j] * $f; |
---|
| 116 | for ($k = $j+1; $k <= $i_; ++$k) { |
---|
| 117 | $g += $this->V[$k][$j] * $this->d[$k]; |
---|
| 118 | $this->e[$k] += $this->V[$k][$j] * $f; |
---|
| 119 | } |
---|
| 120 | $this->e[$j] = $g; |
---|
| 121 | } |
---|
| 122 | $f = 0.0; |
---|
| 123 | for ($j = 0; $j < $i; ++$j) { |
---|
| 124 | $this->e[$j] /= $h; |
---|
| 125 | $f += $this->e[$j] * $this->d[$j]; |
---|
| 126 | } |
---|
| 127 | $hh = $f / (2 * $h); |
---|
| 128 | for ($j=0; $j < $i; ++$j) { |
---|
| 129 | $this->e[$j] -= $hh * $this->d[$j]; |
---|
| 130 | } |
---|
| 131 | for ($j = 0; $j < $i; ++$j) { |
---|
| 132 | $f = $this->d[$j]; |
---|
| 133 | $g = $this->e[$j]; |
---|
| 134 | for ($k = $j; $k <= $i_; ++$k) { |
---|
| 135 | $this->V[$k][$j] -= ($f * $this->e[$k] + $g * $this->d[$k]); |
---|
| 136 | } |
---|
| 137 | $this->d[$j] = $this->V[$i-1][$j]; |
---|
| 138 | $this->V[$i][$j] = 0.0; |
---|
| 139 | } |
---|
| 140 | } |
---|
| 141 | $this->d[$i] = $h; |
---|
| 142 | } |
---|
| 143 | |
---|
| 144 | // Accumulate transformations. |
---|
| 145 | for ($i = 0; $i < $this->n-1; ++$i) { |
---|
| 146 | $this->V[$this->n-1][$i] = $this->V[$i][$i]; |
---|
| 147 | $this->V[$i][$i] = 1.0; |
---|
| 148 | $h = $this->d[$i+1]; |
---|
| 149 | if ($h != 0.0) { |
---|
| 150 | for ($k = 0; $k <= $i; ++$k) { |
---|
| 151 | $this->d[$k] = $this->V[$k][$i+1] / $h; |
---|
| 152 | } |
---|
| 153 | for ($j = 0; $j <= $i; ++$j) { |
---|
| 154 | $g = 0.0; |
---|
| 155 | for ($k = 0; $k <= $i; ++$k) { |
---|
| 156 | $g += $this->V[$k][$i+1] * $this->V[$k][$j]; |
---|
| 157 | } |
---|
| 158 | for ($k = 0; $k <= $i; ++$k) { |
---|
| 159 | $this->V[$k][$j] -= $g * $this->d[$k]; |
---|
| 160 | } |
---|
| 161 | } |
---|
| 162 | } |
---|
| 163 | for ($k = 0; $k <= $i; ++$k) { |
---|
| 164 | $this->V[$k][$i+1] = 0.0; |
---|
| 165 | } |
---|
| 166 | } |
---|
| 167 | |
---|
| 168 | $this->d = $this->V[$this->n-1]; |
---|
| 169 | $this->V[$this->n-1] = array_fill(0, $j, 0.0); |
---|
| 170 | $this->V[$this->n-1][$this->n-1] = 1.0; |
---|
| 171 | $this->e[0] = 0.0; |
---|
| 172 | } |
---|
| 173 | |
---|
| 174 | |
---|
| 175 | /** |
---|
| 176 | * Symmetric tridiagonal QL algorithm. |
---|
| 177 | * |
---|
| 178 | * This is derived from the Algol procedures tql2, by |
---|
| 179 | * Bowdler, Martin, Reinsch, and Wilkinson, Handbook for |
---|
| 180 | * Auto. Comp., Vol.ii-Linear Algebra, and the corresponding |
---|
| 181 | * Fortran subroutine in EISPACK. |
---|
| 182 | * |
---|
| 183 | * @access private |
---|
| 184 | */ |
---|
| 185 | private function tql2() { |
---|
| 186 | for ($i = 1; $i < $this->n; ++$i) { |
---|
| 187 | $this->e[$i-1] = $this->e[$i]; |
---|
| 188 | } |
---|
| 189 | $this->e[$this->n-1] = 0.0; |
---|
| 190 | $f = 0.0; |
---|
| 191 | $tst1 = 0.0; |
---|
| 192 | $eps = pow(2.0,-52.0); |
---|
| 193 | |
---|
| 194 | for ($l = 0; $l < $this->n; ++$l) { |
---|
| 195 | // Find small subdiagonal element |
---|
| 196 | $tst1 = max($tst1, abs($this->d[$l]) + abs($this->e[$l])); |
---|
| 197 | $m = $l; |
---|
| 198 | while ($m < $this->n) { |
---|
| 199 | if (abs($this->e[$m]) <= $eps * $tst1) |
---|
| 200 | break; |
---|
| 201 | ++$m; |
---|
| 202 | } |
---|
| 203 | // If m == l, $this->d[l] is an eigenvalue, |
---|
| 204 | // otherwise, iterate. |
---|
| 205 | if ($m > $l) { |
---|
| 206 | $iter = 0; |
---|
| 207 | do { |
---|
| 208 | // Could check iteration count here. |
---|
| 209 | $iter += 1; |
---|
| 210 | // Compute implicit shift |
---|
| 211 | $g = $this->d[$l]; |
---|
| 212 | $p = ($this->d[$l+1] - $g) / (2.0 * $this->e[$l]); |
---|
| 213 | $r = hypo($p, 1.0); |
---|
| 214 | if ($p < 0) |
---|
| 215 | $r *= -1; |
---|
| 216 | $this->d[$l] = $this->e[$l] / ($p + $r); |
---|
| 217 | $this->d[$l+1] = $this->e[$l] * ($p + $r); |
---|
| 218 | $dl1 = $this->d[$l+1]; |
---|
| 219 | $h = $g - $this->d[$l]; |
---|
| 220 | for ($i = $l + 2; $i < $this->n; ++$i) |
---|
| 221 | $this->d[$i] -= $h; |
---|
| 222 | $f += $h; |
---|
| 223 | // Implicit QL transformation. |
---|
| 224 | $p = $this->d[$m]; |
---|
| 225 | $c = 1.0; |
---|
| 226 | $c2 = $c3 = $c; |
---|
| 227 | $el1 = $this->e[$l + 1]; |
---|
| 228 | $s = $s2 = 0.0; |
---|
| 229 | for ($i = $m-1; $i >= $l; --$i) { |
---|
| 230 | $c3 = $c2; |
---|
| 231 | $c2 = $c; |
---|
| 232 | $s2 = $s; |
---|
| 233 | $g = $c * $this->e[$i]; |
---|
| 234 | $h = $c * $p; |
---|
| 235 | $r = hypo($p, $this->e[$i]); |
---|
| 236 | $this->e[$i+1] = $s * $r; |
---|
| 237 | $s = $this->e[$i] / $r; |
---|
| 238 | $c = $p / $r; |
---|
| 239 | $p = $c * $this->d[$i] - $s * $g; |
---|
| 240 | $this->d[$i+1] = $h + $s * ($c * $g + $s * $this->d[$i]); |
---|
| 241 | // Accumulate transformation. |
---|
| 242 | for ($k = 0; $k < $this->n; ++$k) { |
---|
| 243 | $h = $this->V[$k][$i+1]; |
---|
| 244 | $this->V[$k][$i+1] = $s * $this->V[$k][$i] + $c * $h; |
---|
| 245 | $this->V[$k][$i] = $c * $this->V[$k][$i] - $s * $h; |
---|
| 246 | } |
---|
| 247 | } |
---|
| 248 | $p = -$s * $s2 * $c3 * $el1 * $this->e[$l] / $dl1; |
---|
| 249 | $this->e[$l] = $s * $p; |
---|
| 250 | $this->d[$l] = $c * $p; |
---|
| 251 | // Check for convergence. |
---|
| 252 | } while (abs($this->e[$l]) > $eps * $tst1); |
---|
| 253 | } |
---|
| 254 | $this->d[$l] = $this->d[$l] + $f; |
---|
| 255 | $this->e[$l] = 0.0; |
---|
| 256 | } |
---|
| 257 | |
---|
| 258 | // Sort eigenvalues and corresponding vectors. |
---|
| 259 | for ($i = 0; $i < $this->n - 1; ++$i) { |
---|
| 260 | $k = $i; |
---|
| 261 | $p = $this->d[$i]; |
---|
| 262 | for ($j = $i+1; $j < $this->n; ++$j) { |
---|
| 263 | if ($this->d[$j] < $p) { |
---|
| 264 | $k = $j; |
---|
| 265 | $p = $this->d[$j]; |
---|
| 266 | } |
---|
| 267 | } |
---|
| 268 | if ($k != $i) { |
---|
| 269 | $this->d[$k] = $this->d[$i]; |
---|
| 270 | $this->d[$i] = $p; |
---|
| 271 | for ($j = 0; $j < $this->n; ++$j) { |
---|
| 272 | $p = $this->V[$j][$i]; |
---|
| 273 | $this->V[$j][$i] = $this->V[$j][$k]; |
---|
| 274 | $this->V[$j][$k] = $p; |
---|
| 275 | } |
---|
| 276 | } |
---|
| 277 | } |
---|
| 278 | } |
---|
| 279 | |
---|
| 280 | |
---|
| 281 | /** |
---|
| 282 | * Nonsymmetric reduction to Hessenberg form. |
---|
| 283 | * |
---|
| 284 | * This is derived from the Algol procedures orthes and ortran, |
---|
| 285 | * by Martin and Wilkinson, Handbook for Auto. Comp., |
---|
| 286 | * Vol.ii-Linear Algebra, and the corresponding |
---|
| 287 | * Fortran subroutines in EISPACK. |
---|
| 288 | * |
---|
| 289 | * @access private |
---|
| 290 | */ |
---|
| 291 | private function orthes () { |
---|
| 292 | $low = 0; |
---|
| 293 | $high = $this->n-1; |
---|
| 294 | |
---|
| 295 | for ($m = $low+1; $m <= $high-1; ++$m) { |
---|
| 296 | // Scale column. |
---|
| 297 | $scale = 0.0; |
---|
| 298 | for ($i = $m; $i <= $high; ++$i) { |
---|
| 299 | $scale = $scale + abs($this->H[$i][$m-1]); |
---|
| 300 | } |
---|
| 301 | if ($scale != 0.0) { |
---|
| 302 | // Compute Householder transformation. |
---|
| 303 | $h = 0.0; |
---|
| 304 | for ($i = $high; $i >= $m; --$i) { |
---|
| 305 | $this->ort[$i] = $this->H[$i][$m-1] / $scale; |
---|
| 306 | $h += $this->ort[$i] * $this->ort[$i]; |
---|
| 307 | } |
---|
| 308 | $g = sqrt($h); |
---|
| 309 | if ($this->ort[$m] > 0) { |
---|
| 310 | $g *= -1; |
---|
| 311 | } |
---|
| 312 | $h -= $this->ort[$m] * $g; |
---|
| 313 | $this->ort[$m] -= $g; |
---|
| 314 | // Apply Householder similarity transformation |
---|
| 315 | // H = (I -u * u' / h) * H * (I -u * u') / h) |
---|
| 316 | for ($j = $m; $j < $this->n; ++$j) { |
---|
| 317 | $f = 0.0; |
---|
| 318 | for ($i = $high; $i >= $m; --$i) { |
---|
| 319 | $f += $this->ort[$i] * $this->H[$i][$j]; |
---|
| 320 | } |
---|
| 321 | $f /= $h; |
---|
| 322 | for ($i = $m; $i <= $high; ++$i) { |
---|
| 323 | $this->H[$i][$j] -= $f * $this->ort[$i]; |
---|
| 324 | } |
---|
| 325 | } |
---|
| 326 | for ($i = 0; $i <= $high; ++$i) { |
---|
| 327 | $f = 0.0; |
---|
| 328 | for ($j = $high; $j >= $m; --$j) { |
---|
| 329 | $f += $this->ort[$j] * $this->H[$i][$j]; |
---|
| 330 | } |
---|
| 331 | $f = $f / $h; |
---|
| 332 | for ($j = $m; $j <= $high; ++$j) { |
---|
| 333 | $this->H[$i][$j] -= $f * $this->ort[$j]; |
---|
| 334 | } |
---|
| 335 | } |
---|
| 336 | $this->ort[$m] = $scale * $this->ort[$m]; |
---|
| 337 | $this->H[$m][$m-1] = $scale * $g; |
---|
| 338 | } |
---|
| 339 | } |
---|
| 340 | |
---|
| 341 | // Accumulate transformations (Algol's ortran). |
---|
| 342 | for ($i = 0; $i < $this->n; ++$i) { |
---|
| 343 | for ($j = 0; $j < $this->n; ++$j) { |
---|
| 344 | $this->V[$i][$j] = ($i == $j ? 1.0 : 0.0); |
---|
| 345 | } |
---|
| 346 | } |
---|
| 347 | for ($m = $high-1; $m >= $low+1; --$m) { |
---|
| 348 | if ($this->H[$m][$m-1] != 0.0) { |
---|
| 349 | for ($i = $m+1; $i <= $high; ++$i) { |
---|
| 350 | $this->ort[$i] = $this->H[$i][$m-1]; |
---|
| 351 | } |
---|
| 352 | for ($j = $m; $j <= $high; ++$j) { |
---|
| 353 | $g = 0.0; |
---|
| 354 | for ($i = $m; $i <= $high; ++$i) { |
---|
| 355 | $g += $this->ort[$i] * $this->V[$i][$j]; |
---|
| 356 | } |
---|
| 357 | // Double division avoids possible underflow |
---|
| 358 | $g = ($g / $this->ort[$m]) / $this->H[$m][$m-1]; |
---|
| 359 | for ($i = $m; $i <= $high; ++$i) { |
---|
| 360 | $this->V[$i][$j] += $g * $this->ort[$i]; |
---|
| 361 | } |
---|
| 362 | } |
---|
| 363 | } |
---|
| 364 | } |
---|
| 365 | } |
---|
| 366 | |
---|
| 367 | |
---|
| 368 | /** |
---|
| 369 | * Performs complex division. |
---|
| 370 | * |
---|
| 371 | * @access private |
---|
| 372 | */ |
---|
| 373 | private function cdiv($xr, $xi, $yr, $yi) { |
---|
| 374 | if (abs($yr) > abs($yi)) { |
---|
| 375 | $r = $yi / $yr; |
---|
| 376 | $d = $yr + $r * $yi; |
---|
| 377 | $this->cdivr = ($xr + $r * $xi) / $d; |
---|
| 378 | $this->cdivi = ($xi - $r * $xr) / $d; |
---|
| 379 | } else { |
---|
| 380 | $r = $yr / $yi; |
---|
| 381 | $d = $yi + $r * $yr; |
---|
| 382 | $this->cdivr = ($r * $xr + $xi) / $d; |
---|
| 383 | $this->cdivi = ($r * $xi - $xr) / $d; |
---|
| 384 | } |
---|
| 385 | } |
---|
| 386 | |
---|
| 387 | |
---|
| 388 | /** |
---|
| 389 | * Nonsymmetric reduction from Hessenberg to real Schur form. |
---|
| 390 | * |
---|
| 391 | * Code is derived from the Algol procedure hqr2, |
---|
| 392 | * by Martin and Wilkinson, Handbook for Auto. Comp., |
---|
| 393 | * Vol.ii-Linear Algebra, and the corresponding |
---|
| 394 | * Fortran subroutine in EISPACK. |
---|
| 395 | * |
---|
| 396 | * @access private |
---|
| 397 | */ |
---|
| 398 | private function hqr2 () { |
---|
| 399 | // Initialize |
---|
| 400 | $nn = $this->n; |
---|
| 401 | $n = $nn - 1; |
---|
| 402 | $low = 0; |
---|
| 403 | $high = $nn - 1; |
---|
| 404 | $eps = pow(2.0, -52.0); |
---|
| 405 | $exshift = 0.0; |
---|
| 406 | $p = $q = $r = $s = $z = 0; |
---|
| 407 | // Store roots isolated by balanc and compute matrix norm |
---|
| 408 | $norm = 0.0; |
---|
| 409 | |
---|
| 410 | for ($i = 0; $i < $nn; ++$i) { |
---|
| 411 | if (($i < $low) OR ($i > $high)) { |
---|
| 412 | $this->d[$i] = $this->H[$i][$i]; |
---|
| 413 | $this->e[$i] = 0.0; |
---|
| 414 | } |
---|
| 415 | for ($j = max($i-1, 0); $j < $nn; ++$j) { |
---|
| 416 | $norm = $norm + abs($this->H[$i][$j]); |
---|
| 417 | } |
---|
| 418 | } |
---|
| 419 | |
---|
| 420 | // Outer loop over eigenvalue index |
---|
| 421 | $iter = 0; |
---|
| 422 | while ($n >= $low) { |
---|
| 423 | // Look for single small sub-diagonal element |
---|
| 424 | $l = $n; |
---|
| 425 | while ($l > $low) { |
---|
| 426 | $s = abs($this->H[$l-1][$l-1]) + abs($this->H[$l][$l]); |
---|
| 427 | if ($s == 0.0) { |
---|
| 428 | $s = $norm; |
---|
| 429 | } |
---|
| 430 | if (abs($this->H[$l][$l-1]) < $eps * $s) { |
---|
| 431 | break; |
---|
| 432 | } |
---|
| 433 | --$l; |
---|
| 434 | } |
---|
| 435 | // Check for convergence |
---|
| 436 | // One root found |
---|
| 437 | if ($l == $n) { |
---|
| 438 | $this->H[$n][$n] = $this->H[$n][$n] + $exshift; |
---|
| 439 | $this->d[$n] = $this->H[$n][$n]; |
---|
| 440 | $this->e[$n] = 0.0; |
---|
| 441 | --$n; |
---|
| 442 | $iter = 0; |
---|
| 443 | // Two roots found |
---|
| 444 | } else if ($l == $n-1) { |
---|
| 445 | $w = $this->H[$n][$n-1] * $this->H[$n-1][$n]; |
---|
| 446 | $p = ($this->H[$n-1][$n-1] - $this->H[$n][$n]) / 2.0; |
---|
| 447 | $q = $p * $p + $w; |
---|
| 448 | $z = sqrt(abs($q)); |
---|
| 449 | $this->H[$n][$n] = $this->H[$n][$n] + $exshift; |
---|
| 450 | $this->H[$n-1][$n-1] = $this->H[$n-1][$n-1] + $exshift; |
---|
| 451 | $x = $this->H[$n][$n]; |
---|
| 452 | // Real pair |
---|
| 453 | if ($q >= 0) { |
---|
| 454 | if ($p >= 0) { |
---|
| 455 | $z = $p + $z; |
---|
| 456 | } else { |
---|
| 457 | $z = $p - $z; |
---|
| 458 | } |
---|
| 459 | $this->d[$n-1] = $x + $z; |
---|
| 460 | $this->d[$n] = $this->d[$n-1]; |
---|
| 461 | if ($z != 0.0) { |
---|
| 462 | $this->d[$n] = $x - $w / $z; |
---|
| 463 | } |
---|
| 464 | $this->e[$n-1] = 0.0; |
---|
| 465 | $this->e[$n] = 0.0; |
---|
| 466 | $x = $this->H[$n][$n-1]; |
---|
| 467 | $s = abs($x) + abs($z); |
---|
| 468 | $p = $x / $s; |
---|
| 469 | $q = $z / $s; |
---|
| 470 | $r = sqrt($p * $p + $q * $q); |
---|
| 471 | $p = $p / $r; |
---|
| 472 | $q = $q / $r; |
---|
| 473 | // Row modification |
---|
| 474 | for ($j = $n-1; $j < $nn; ++$j) { |
---|
| 475 | $z = $this->H[$n-1][$j]; |
---|
| 476 | $this->H[$n-1][$j] = $q * $z + $p * $this->H[$n][$j]; |
---|
| 477 | $this->H[$n][$j] = $q * $this->H[$n][$j] - $p * $z; |
---|
| 478 | } |
---|
| 479 | // Column modification |
---|
| 480 | for ($i = 0; $i <= n; ++$i) { |
---|
| 481 | $z = $this->H[$i][$n-1]; |
---|
| 482 | $this->H[$i][$n-1] = $q * $z + $p * $this->H[$i][$n]; |
---|
| 483 | $this->H[$i][$n] = $q * $this->H[$i][$n] - $p * $z; |
---|
| 484 | } |
---|
| 485 | // Accumulate transformations |
---|
| 486 | for ($i = $low; $i <= $high; ++$i) { |
---|
| 487 | $z = $this->V[$i][$n-1]; |
---|
| 488 | $this->V[$i][$n-1] = $q * $z + $p * $this->V[$i][$n]; |
---|
| 489 | $this->V[$i][$n] = $q * $this->V[$i][$n] - $p * $z; |
---|
| 490 | } |
---|
| 491 | // Complex pair |
---|
| 492 | } else { |
---|
| 493 | $this->d[$n-1] = $x + $p; |
---|
| 494 | $this->d[$n] = $x + $p; |
---|
| 495 | $this->e[$n-1] = $z; |
---|
| 496 | $this->e[$n] = -$z; |
---|
| 497 | } |
---|
| 498 | $n = $n - 2; |
---|
| 499 | $iter = 0; |
---|
| 500 | // No convergence yet |
---|
| 501 | } else { |
---|
| 502 | // Form shift |
---|
| 503 | $x = $this->H[$n][$n]; |
---|
| 504 | $y = 0.0; |
---|
| 505 | $w = 0.0; |
---|
| 506 | if ($l < $n) { |
---|
| 507 | $y = $this->H[$n-1][$n-1]; |
---|
| 508 | $w = $this->H[$n][$n-1] * $this->H[$n-1][$n]; |
---|
| 509 | } |
---|
| 510 | // Wilkinson's original ad hoc shift |
---|
| 511 | if ($iter == 10) { |
---|
| 512 | $exshift += $x; |
---|
| 513 | for ($i = $low; $i <= $n; ++$i) { |
---|
| 514 | $this->H[$i][$i] -= $x; |
---|
| 515 | } |
---|
| 516 | $s = abs($this->H[$n][$n-1]) + abs($this->H[$n-1][$n-2]); |
---|
| 517 | $x = $y = 0.75 * $s; |
---|
| 518 | $w = -0.4375 * $s * $s; |
---|
| 519 | } |
---|
| 520 | // MATLAB's new ad hoc shift |
---|
| 521 | if ($iter == 30) { |
---|
| 522 | $s = ($y - $x) / 2.0; |
---|
| 523 | $s = $s * $s + $w; |
---|
| 524 | if ($s > 0) { |
---|
| 525 | $s = sqrt($s); |
---|
| 526 | if ($y < $x) { |
---|
| 527 | $s = -$s; |
---|
| 528 | } |
---|
| 529 | $s = $x - $w / (($y - $x) / 2.0 + $s); |
---|
| 530 | for ($i = $low; $i <= $n; ++$i) { |
---|
| 531 | $this->H[$i][$i] -= $s; |
---|
| 532 | } |
---|
| 533 | $exshift += $s; |
---|
| 534 | $x = $y = $w = 0.964; |
---|
| 535 | } |
---|
| 536 | } |
---|
| 537 | // Could check iteration count here. |
---|
| 538 | $iter = $iter + 1; |
---|
| 539 | // Look for two consecutive small sub-diagonal elements |
---|
| 540 | $m = $n - 2; |
---|
| 541 | while ($m >= $l) { |
---|
| 542 | $z = $this->H[$m][$m]; |
---|
| 543 | $r = $x - $z; |
---|
| 544 | $s = $y - $z; |
---|
| 545 | $p = ($r * $s - $w) / $this->H[$m+1][$m] + $this->H[$m][$m+1]; |
---|
| 546 | $q = $this->H[$m+1][$m+1] - $z - $r - $s; |
---|
| 547 | $r = $this->H[$m+2][$m+1]; |
---|
| 548 | $s = abs($p) + abs($q) + abs($r); |
---|
| 549 | $p = $p / $s; |
---|
| 550 | $q = $q / $s; |
---|
| 551 | $r = $r / $s; |
---|
| 552 | if ($m == $l) { |
---|
| 553 | break; |
---|
| 554 | } |
---|
| 555 | if (abs($this->H[$m][$m-1]) * (abs($q) + abs($r)) < |
---|
| 556 | $eps * (abs($p) * (abs($this->H[$m-1][$m-1]) + abs($z) + abs($this->H[$m+1][$m+1])))) { |
---|
| 557 | break; |
---|
| 558 | } |
---|
| 559 | --$m; |
---|
| 560 | } |
---|
| 561 | for ($i = $m + 2; $i <= $n; ++$i) { |
---|
| 562 | $this->H[$i][$i-2] = 0.0; |
---|
| 563 | if ($i > $m+2) { |
---|
| 564 | $this->H[$i][$i-3] = 0.0; |
---|
| 565 | } |
---|
| 566 | } |
---|
| 567 | // Double QR step involving rows l:n and columns m:n |
---|
| 568 | for ($k = $m; $k <= $n-1; ++$k) { |
---|
| 569 | $notlast = ($k != $n-1); |
---|
| 570 | if ($k != $m) { |
---|
| 571 | $p = $this->H[$k][$k-1]; |
---|
| 572 | $q = $this->H[$k+1][$k-1]; |
---|
| 573 | $r = ($notlast ? $this->H[$k+2][$k-1] : 0.0); |
---|
| 574 | $x = abs($p) + abs($q) + abs($r); |
---|
| 575 | if ($x != 0.0) { |
---|
| 576 | $p = $p / $x; |
---|
| 577 | $q = $q / $x; |
---|
| 578 | $r = $r / $x; |
---|
| 579 | } |
---|
| 580 | } |
---|
| 581 | if ($x == 0.0) { |
---|
| 582 | break; |
---|
| 583 | } |
---|
| 584 | $s = sqrt($p * $p + $q * $q + $r * $r); |
---|
| 585 | if ($p < 0) { |
---|
| 586 | $s = -$s; |
---|
| 587 | } |
---|
| 588 | if ($s != 0) { |
---|
| 589 | if ($k != $m) { |
---|
| 590 | $this->H[$k][$k-1] = -$s * $x; |
---|
| 591 | } elseif ($l != $m) { |
---|
| 592 | $this->H[$k][$k-1] = -$this->H[$k][$k-1]; |
---|
| 593 | } |
---|
| 594 | $p = $p + $s; |
---|
| 595 | $x = $p / $s; |
---|
| 596 | $y = $q / $s; |
---|
| 597 | $z = $r / $s; |
---|
| 598 | $q = $q / $p; |
---|
| 599 | $r = $r / $p; |
---|
| 600 | // Row modification |
---|
| 601 | for ($j = $k; $j < $nn; ++$j) { |
---|
| 602 | $p = $this->H[$k][$j] + $q * $this->H[$k+1][$j]; |
---|
| 603 | if ($notlast) { |
---|
| 604 | $p = $p + $r * $this->H[$k+2][$j]; |
---|
| 605 | $this->H[$k+2][$j] = $this->H[$k+2][$j] - $p * $z; |
---|
| 606 | } |
---|
| 607 | $this->H[$k][$j] = $this->H[$k][$j] - $p * $x; |
---|
| 608 | $this->H[$k+1][$j] = $this->H[$k+1][$j] - $p * $y; |
---|
| 609 | } |
---|
| 610 | // Column modification |
---|
| 611 | for ($i = 0; $i <= min($n, $k+3); ++$i) { |
---|
| 612 | $p = $x * $this->H[$i][$k] + $y * $this->H[$i][$k+1]; |
---|
| 613 | if ($notlast) { |
---|
| 614 | $p = $p + $z * $this->H[$i][$k+2]; |
---|
| 615 | $this->H[$i][$k+2] = $this->H[$i][$k+2] - $p * $r; |
---|
| 616 | } |
---|
| 617 | $this->H[$i][$k] = $this->H[$i][$k] - $p; |
---|
| 618 | $this->H[$i][$k+1] = $this->H[$i][$k+1] - $p * $q; |
---|
| 619 | } |
---|
| 620 | // Accumulate transformations |
---|
| 621 | for ($i = $low; $i <= $high; ++$i) { |
---|
| 622 | $p = $x * $this->V[$i][$k] + $y * $this->V[$i][$k+1]; |
---|
| 623 | if ($notlast) { |
---|
| 624 | $p = $p + $z * $this->V[$i][$k+2]; |
---|
| 625 | $this->V[$i][$k+2] = $this->V[$i][$k+2] - $p * $r; |
---|
| 626 | } |
---|
| 627 | $this->V[$i][$k] = $this->V[$i][$k] - $p; |
---|
| 628 | $this->V[$i][$k+1] = $this->V[$i][$k+1] - $p * $q; |
---|
| 629 | } |
---|
| 630 | } // ($s != 0) |
---|
| 631 | } // k loop |
---|
| 632 | } // check convergence |
---|
| 633 | } // while ($n >= $low) |
---|
| 634 | |
---|
| 635 | // Backsubstitute to find vectors of upper triangular form |
---|
| 636 | if ($norm == 0.0) { |
---|
| 637 | return; |
---|
| 638 | } |
---|
| 639 | |
---|
| 640 | for ($n = $nn-1; $n >= 0; --$n) { |
---|
| 641 | $p = $this->d[$n]; |
---|
| 642 | $q = $this->e[$n]; |
---|
| 643 | // Real vector |
---|
| 644 | if ($q == 0) { |
---|
| 645 | $l = $n; |
---|
| 646 | $this->H[$n][$n] = 1.0; |
---|
| 647 | for ($i = $n-1; $i >= 0; --$i) { |
---|
| 648 | $w = $this->H[$i][$i] - $p; |
---|
| 649 | $r = 0.0; |
---|
| 650 | for ($j = $l; $j <= $n; ++$j) { |
---|
| 651 | $r = $r + $this->H[$i][$j] * $this->H[$j][$n]; |
---|
| 652 | } |
---|
| 653 | if ($this->e[$i] < 0.0) { |
---|
| 654 | $z = $w; |
---|
| 655 | $s = $r; |
---|
| 656 | } else { |
---|
| 657 | $l = $i; |
---|
| 658 | if ($this->e[$i] == 0.0) { |
---|
| 659 | if ($w != 0.0) { |
---|
| 660 | $this->H[$i][$n] = -$r / $w; |
---|
| 661 | } else { |
---|
| 662 | $this->H[$i][$n] = -$r / ($eps * $norm); |
---|
| 663 | } |
---|
| 664 | // Solve real equations |
---|
| 665 | } else { |
---|
| 666 | $x = $this->H[$i][$i+1]; |
---|
| 667 | $y = $this->H[$i+1][$i]; |
---|
| 668 | $q = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i]; |
---|
| 669 | $t = ($x * $s - $z * $r) / $q; |
---|
| 670 | $this->H[$i][$n] = $t; |
---|
| 671 | if (abs($x) > abs($z)) { |
---|
| 672 | $this->H[$i+1][$n] = (-$r - $w * $t) / $x; |
---|
| 673 | } else { |
---|
| 674 | $this->H[$i+1][$n] = (-$s - $y * $t) / $z; |
---|
| 675 | } |
---|
| 676 | } |
---|
| 677 | // Overflow control |
---|
| 678 | $t = abs($this->H[$i][$n]); |
---|
| 679 | if (($eps * $t) * $t > 1) { |
---|
| 680 | for ($j = $i; $j <= $n; ++$j) { |
---|
| 681 | $this->H[$j][$n] = $this->H[$j][$n] / $t; |
---|
| 682 | } |
---|
| 683 | } |
---|
| 684 | } |
---|
| 685 | } |
---|
| 686 | // Complex vector |
---|
| 687 | } else if ($q < 0) { |
---|
| 688 | $l = $n-1; |
---|
| 689 | // Last vector component imaginary so matrix is triangular |
---|
| 690 | if (abs($this->H[$n][$n-1]) > abs($this->H[$n-1][$n])) { |
---|
| 691 | $this->H[$n-1][$n-1] = $q / $this->H[$n][$n-1]; |
---|
| 692 | $this->H[$n-1][$n] = -($this->H[$n][$n] - $p) / $this->H[$n][$n-1]; |
---|
| 693 | } else { |
---|
| 694 | $this->cdiv(0.0, -$this->H[$n-1][$n], $this->H[$n-1][$n-1] - $p, $q); |
---|
| 695 | $this->H[$n-1][$n-1] = $this->cdivr; |
---|
| 696 | $this->H[$n-1][$n] = $this->cdivi; |
---|
| 697 | } |
---|
| 698 | $this->H[$n][$n-1] = 0.0; |
---|
| 699 | $this->H[$n][$n] = 1.0; |
---|
| 700 | for ($i = $n-2; $i >= 0; --$i) { |
---|
| 701 | // double ra,sa,vr,vi; |
---|
| 702 | $ra = 0.0; |
---|
| 703 | $sa = 0.0; |
---|
| 704 | for ($j = $l; $j <= $n; ++$j) { |
---|
| 705 | $ra = $ra + $this->H[$i][$j] * $this->H[$j][$n-1]; |
---|
| 706 | $sa = $sa + $this->H[$i][$j] * $this->H[$j][$n]; |
---|
| 707 | } |
---|
| 708 | $w = $this->H[$i][$i] - $p; |
---|
| 709 | if ($this->e[$i] < 0.0) { |
---|
| 710 | $z = $w; |
---|
| 711 | $r = $ra; |
---|
| 712 | $s = $sa; |
---|
| 713 | } else { |
---|
| 714 | $l = $i; |
---|
| 715 | if ($this->e[$i] == 0) { |
---|
| 716 | $this->cdiv(-$ra, -$sa, $w, $q); |
---|
| 717 | $this->H[$i][$n-1] = $this->cdivr; |
---|
| 718 | $this->H[$i][$n] = $this->cdivi; |
---|
| 719 | } else { |
---|
| 720 | // Solve complex equations |
---|
| 721 | $x = $this->H[$i][$i+1]; |
---|
| 722 | $y = $this->H[$i+1][$i]; |
---|
| 723 | $vr = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i] - $q * $q; |
---|
| 724 | $vi = ($this->d[$i] - $p) * 2.0 * $q; |
---|
| 725 | if ($vr == 0.0 & $vi == 0.0) { |
---|
| 726 | $vr = $eps * $norm * (abs($w) + abs($q) + abs($x) + abs($y) + abs($z)); |
---|
| 727 | } |
---|
| 728 | $this->cdiv($x * $r - $z * $ra + $q * $sa, $x * $s - $z * $sa - $q * $ra, $vr, $vi); |
---|
| 729 | $this->H[$i][$n-1] = $this->cdivr; |
---|
| 730 | $this->H[$i][$n] = $this->cdivi; |
---|
| 731 | if (abs($x) > (abs($z) + abs($q))) { |
---|
| 732 | $this->H[$i+1][$n-1] = (-$ra - $w * $this->H[$i][$n-1] + $q * $this->H[$i][$n]) / $x; |
---|
| 733 | $this->H[$i+1][$n] = (-$sa - $w * $this->H[$i][$n] - $q * $this->H[$i][$n-1]) / $x; |
---|
| 734 | } else { |
---|
| 735 | $this->cdiv(-$r - $y * $this->H[$i][$n-1], -$s - $y * $this->H[$i][$n], $z, $q); |
---|
| 736 | $this->H[$i+1][$n-1] = $this->cdivr; |
---|
| 737 | $this->H[$i+1][$n] = $this->cdivi; |
---|
| 738 | } |
---|
| 739 | } |
---|
| 740 | // Overflow control |
---|
| 741 | $t = max(abs($this->H[$i][$n-1]),abs($this->H[$i][$n])); |
---|
| 742 | if (($eps * $t) * $t > 1) { |
---|
| 743 | for ($j = $i; $j <= $n; ++$j) { |
---|
| 744 | $this->H[$j][$n-1] = $this->H[$j][$n-1] / $t; |
---|
| 745 | $this->H[$j][$n] = $this->H[$j][$n] / $t; |
---|
| 746 | } |
---|
| 747 | } |
---|
| 748 | } // end else |
---|
| 749 | } // end for |
---|
| 750 | } // end else for complex case |
---|
| 751 | } // end for |
---|
| 752 | |
---|
| 753 | // Vectors of isolated roots |
---|
| 754 | for ($i = 0; $i < $nn; ++$i) { |
---|
| 755 | if ($i < $low | $i > $high) { |
---|
| 756 | for ($j = $i; $j < $nn; ++$j) { |
---|
| 757 | $this->V[$i][$j] = $this->H[$i][$j]; |
---|
| 758 | } |
---|
| 759 | } |
---|
| 760 | } |
---|
| 761 | |
---|
| 762 | // Back transformation to get eigenvectors of original matrix |
---|
| 763 | for ($j = $nn-1; $j >= $low; --$j) { |
---|
| 764 | for ($i = $low; $i <= $high; ++$i) { |
---|
| 765 | $z = 0.0; |
---|
| 766 | for ($k = $low; $k <= min($j,$high); ++$k) { |
---|
| 767 | $z = $z + $this->V[$i][$k] * $this->H[$k][$j]; |
---|
| 768 | } |
---|
| 769 | $this->V[$i][$j] = $z; |
---|
| 770 | } |
---|
| 771 | } |
---|
| 772 | } // end hqr2 |
---|
| 773 | |
---|
| 774 | |
---|
| 775 | /** |
---|
| 776 | * Constructor: Check for symmetry, then construct the eigenvalue decomposition |
---|
| 777 | * |
---|
| 778 | * @access public |
---|
| 779 | * @param A Square matrix |
---|
| 780 | * @return Structure to access D and V. |
---|
| 781 | */ |
---|
| 782 | public function __construct($Arg) { |
---|
| 783 | $this->A = $Arg->getArray(); |
---|
| 784 | $this->n = $Arg->getColumnDimension(); |
---|
| 785 | |
---|
| 786 | $issymmetric = true; |
---|
| 787 | for ($j = 0; ($j < $this->n) & $issymmetric; ++$j) { |
---|
| 788 | for ($i = 0; ($i < $this->n) & $issymmetric; ++$i) { |
---|
| 789 | $issymmetric = ($this->A[$i][$j] == $this->A[$j][$i]); |
---|
| 790 | } |
---|
| 791 | } |
---|
| 792 | |
---|
| 793 | if ($issymmetric) { |
---|
| 794 | $this->V = $this->A; |
---|
| 795 | // Tridiagonalize. |
---|
| 796 | $this->tred2(); |
---|
| 797 | // Diagonalize. |
---|
| 798 | $this->tql2(); |
---|
| 799 | } else { |
---|
| 800 | $this->H = $this->A; |
---|
| 801 | $this->ort = array(); |
---|
| 802 | // Reduce to Hessenberg form. |
---|
| 803 | $this->orthes(); |
---|
| 804 | // Reduce Hessenberg to real Schur form. |
---|
| 805 | $this->hqr2(); |
---|
| 806 | } |
---|
| 807 | } |
---|
| 808 | |
---|
| 809 | |
---|
| 810 | /** |
---|
| 811 | * Return the eigenvector matrix |
---|
| 812 | * |
---|
| 813 | * @access public |
---|
| 814 | * @return V |
---|
| 815 | */ |
---|
| 816 | public function getV() { |
---|
| 817 | return new Matrix($this->V, $this->n, $this->n); |
---|
| 818 | } |
---|
| 819 | |
---|
| 820 | |
---|
| 821 | /** |
---|
| 822 | * Return the real parts of the eigenvalues |
---|
| 823 | * |
---|
| 824 | * @access public |
---|
| 825 | * @return real(diag(D)) |
---|
| 826 | */ |
---|
| 827 | public function getRealEigenvalues() { |
---|
| 828 | return $this->d; |
---|
| 829 | } |
---|
| 830 | |
---|
| 831 | |
---|
| 832 | /** |
---|
| 833 | * Return the imaginary parts of the eigenvalues |
---|
| 834 | * |
---|
| 835 | * @access public |
---|
| 836 | * @return imag(diag(D)) |
---|
| 837 | */ |
---|
| 838 | public function getImagEigenvalues() { |
---|
| 839 | return $this->e; |
---|
| 840 | } |
---|
| 841 | |
---|
| 842 | |
---|
| 843 | /** |
---|
| 844 | * Return the block diagonal eigenvalue matrix |
---|
| 845 | * |
---|
| 846 | * @access public |
---|
| 847 | * @return D |
---|
| 848 | */ |
---|
| 849 | public function getD() { |
---|
| 850 | for ($i = 0; $i < $this->n; ++$i) { |
---|
| 851 | $D[$i] = array_fill(0, $this->n, 0.0); |
---|
| 852 | $D[$i][$i] = $this->d[$i]; |
---|
| 853 | if ($this->e[$i] == 0) { |
---|
| 854 | continue; |
---|
| 855 | } |
---|
| 856 | $o = ($this->e[$i] > 0) ? $i + 1 : $i - 1; |
---|
| 857 | $D[$i][$o] = $this->e[$i]; |
---|
| 858 | } |
---|
| 859 | return new Matrix($D); |
---|
| 860 | } |
---|
| 861 | |
---|
| 862 | } // class EigenvalueDecomposition |
---|