[289] | 1 | <?php |
---|
| 2 | /** |
---|
| 3 | * PHPExcel |
---|
| 4 | * |
---|
| 5 | * Copyright (c) 2006 - 2014 PHPExcel |
---|
| 6 | * |
---|
| 7 | * This library is free software; you can redistribute it and/or |
---|
| 8 | * modify it under the terms of the GNU Lesser General Public |
---|
| 9 | * License as published by the Free Software Foundation; either |
---|
| 10 | * version 2.1 of the License, or (at your option) any later version. |
---|
| 11 | * |
---|
| 12 | * This library is distributed in the hope that it will be useful, |
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
| 15 | * Lesser General Public License for more details. |
---|
| 16 | * |
---|
| 17 | * You should have received a copy of the GNU Lesser General Public |
---|
| 18 | * License along with this library; if not, write to the Free Software |
---|
| 19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
---|
| 20 | * |
---|
| 21 | * @category PHPExcel |
---|
| 22 | * @package PHPExcel_Shared_Trend |
---|
| 23 | * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel) |
---|
| 24 | * @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL |
---|
| 25 | * @version 1.8.0, 2014-03-02 |
---|
| 26 | */ |
---|
| 27 | |
---|
| 28 | |
---|
| 29 | require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php'; |
---|
| 30 | require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/JAMA/Matrix.php'; |
---|
| 31 | |
---|
| 32 | |
---|
| 33 | /** |
---|
| 34 | * PHPExcel_Polynomial_Best_Fit |
---|
| 35 | * |
---|
| 36 | * @category PHPExcel |
---|
| 37 | * @package PHPExcel_Shared_Trend |
---|
| 38 | * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel) |
---|
| 39 | */ |
---|
| 40 | class PHPExcel_Polynomial_Best_Fit extends PHPExcel_Best_Fit |
---|
| 41 | { |
---|
| 42 | /** |
---|
| 43 | * Algorithm type to use for best-fit |
---|
| 44 | * (Name of this trend class) |
---|
| 45 | * |
---|
| 46 | * @var string |
---|
| 47 | **/ |
---|
| 48 | protected $_bestFitType = 'polynomial'; |
---|
| 49 | |
---|
| 50 | /** |
---|
| 51 | * Polynomial order |
---|
| 52 | * |
---|
| 53 | * @protected |
---|
| 54 | * @var int |
---|
| 55 | **/ |
---|
| 56 | protected $_order = 0; |
---|
| 57 | |
---|
| 58 | |
---|
| 59 | /** |
---|
| 60 | * Return the order of this polynomial |
---|
| 61 | * |
---|
| 62 | * @return int |
---|
| 63 | **/ |
---|
| 64 | public function getOrder() { |
---|
| 65 | return $this->_order; |
---|
| 66 | } // function getOrder() |
---|
| 67 | |
---|
| 68 | |
---|
| 69 | /** |
---|
| 70 | * Return the Y-Value for a specified value of X |
---|
| 71 | * |
---|
| 72 | * @param float $xValue X-Value |
---|
| 73 | * @return float Y-Value |
---|
| 74 | **/ |
---|
| 75 | public function getValueOfYForX($xValue) { |
---|
| 76 | $retVal = $this->getIntersect(); |
---|
| 77 | $slope = $this->getSlope(); |
---|
| 78 | foreach($slope as $key => $value) { |
---|
| 79 | if ($value != 0.0) { |
---|
| 80 | $retVal += $value * pow($xValue, $key + 1); |
---|
| 81 | } |
---|
| 82 | } |
---|
| 83 | return $retVal; |
---|
| 84 | } // function getValueOfYForX() |
---|
| 85 | |
---|
| 86 | |
---|
| 87 | /** |
---|
| 88 | * Return the X-Value for a specified value of Y |
---|
| 89 | * |
---|
| 90 | * @param float $yValue Y-Value |
---|
| 91 | * @return float X-Value |
---|
| 92 | **/ |
---|
| 93 | public function getValueOfXForY($yValue) { |
---|
| 94 | return ($yValue - $this->getIntersect()) / $this->getSlope(); |
---|
| 95 | } // function getValueOfXForY() |
---|
| 96 | |
---|
| 97 | |
---|
| 98 | /** |
---|
| 99 | * Return the Equation of the best-fit line |
---|
| 100 | * |
---|
| 101 | * @param int $dp Number of places of decimal precision to display |
---|
| 102 | * @return string |
---|
| 103 | **/ |
---|
| 104 | public function getEquation($dp=0) { |
---|
| 105 | $slope = $this->getSlope($dp); |
---|
| 106 | $intersect = $this->getIntersect($dp); |
---|
| 107 | |
---|
| 108 | $equation = 'Y = '.$intersect; |
---|
| 109 | foreach($slope as $key => $value) { |
---|
| 110 | if ($value != 0.0) { |
---|
| 111 | $equation .= ' + '.$value.' * X'; |
---|
| 112 | if ($key > 0) { |
---|
| 113 | $equation .= '^'.($key + 1); |
---|
| 114 | } |
---|
| 115 | } |
---|
| 116 | } |
---|
| 117 | return $equation; |
---|
| 118 | } // function getEquation() |
---|
| 119 | |
---|
| 120 | |
---|
| 121 | /** |
---|
| 122 | * Return the Slope of the line |
---|
| 123 | * |
---|
| 124 | * @param int $dp Number of places of decimal precision to display |
---|
| 125 | * @return string |
---|
| 126 | **/ |
---|
| 127 | public function getSlope($dp=0) { |
---|
| 128 | if ($dp != 0) { |
---|
| 129 | $coefficients = array(); |
---|
| 130 | foreach($this->_slope as $coefficient) { |
---|
| 131 | $coefficients[] = round($coefficient,$dp); |
---|
| 132 | } |
---|
| 133 | return $coefficients; |
---|
| 134 | } |
---|
| 135 | return $this->_slope; |
---|
| 136 | } // function getSlope() |
---|
| 137 | |
---|
| 138 | |
---|
| 139 | public function getCoefficients($dp=0) { |
---|
| 140 | return array_merge(array($this->getIntersect($dp)),$this->getSlope($dp)); |
---|
| 141 | } // function getCoefficients() |
---|
| 142 | |
---|
| 143 | |
---|
| 144 | /** |
---|
| 145 | * Execute the regression and calculate the goodness of fit for a set of X and Y data values |
---|
| 146 | * |
---|
| 147 | * @param int $order Order of Polynomial for this regression |
---|
| 148 | * @param float[] $yValues The set of Y-values for this regression |
---|
| 149 | * @param float[] $xValues The set of X-values for this regression |
---|
| 150 | * @param boolean $const |
---|
| 151 | */ |
---|
| 152 | private function _polynomial_regression($order, $yValues, $xValues, $const) { |
---|
| 153 | // calculate sums |
---|
| 154 | $x_sum = array_sum($xValues); |
---|
| 155 | $y_sum = array_sum($yValues); |
---|
| 156 | $xx_sum = $xy_sum = 0; |
---|
| 157 | for($i = 0; $i < $this->_valueCount; ++$i) { |
---|
| 158 | $xy_sum += $xValues[$i] * $yValues[$i]; |
---|
| 159 | $xx_sum += $xValues[$i] * $xValues[$i]; |
---|
| 160 | $yy_sum += $yValues[$i] * $yValues[$i]; |
---|
| 161 | } |
---|
| 162 | /* |
---|
| 163 | * This routine uses logic from the PHP port of polyfit version 0.1 |
---|
| 164 | * written by Michael Bommarito and Paul Meagher |
---|
| 165 | * |
---|
| 166 | * The function fits a polynomial function of order $order through |
---|
| 167 | * a series of x-y data points using least squares. |
---|
| 168 | * |
---|
| 169 | */ |
---|
| 170 | for ($i = 0; $i < $this->_valueCount; ++$i) { |
---|
| 171 | for ($j = 0; $j <= $order; ++$j) { |
---|
| 172 | $A[$i][$j] = pow($xValues[$i], $j); |
---|
| 173 | } |
---|
| 174 | } |
---|
| 175 | for ($i=0; $i < $this->_valueCount; ++$i) { |
---|
| 176 | $B[$i] = array($yValues[$i]); |
---|
| 177 | } |
---|
| 178 | $matrixA = new Matrix($A); |
---|
| 179 | $matrixB = new Matrix($B); |
---|
| 180 | $C = $matrixA->solve($matrixB); |
---|
| 181 | |
---|
| 182 | $coefficients = array(); |
---|
| 183 | for($i = 0; $i < $C->m; ++$i) { |
---|
| 184 | $r = $C->get($i, 0); |
---|
| 185 | if (abs($r) <= pow(10, -9)) { |
---|
| 186 | $r = 0; |
---|
| 187 | } |
---|
| 188 | $coefficients[] = $r; |
---|
| 189 | } |
---|
| 190 | |
---|
| 191 | $this->_intersect = array_shift($coefficients); |
---|
| 192 | $this->_slope = $coefficients; |
---|
| 193 | |
---|
| 194 | $this->_calculateGoodnessOfFit($x_sum,$y_sum,$xx_sum,$yy_sum,$xy_sum); |
---|
| 195 | foreach($this->_xValues as $xKey => $xValue) { |
---|
| 196 | $this->_yBestFitValues[$xKey] = $this->getValueOfYForX($xValue); |
---|
| 197 | } |
---|
| 198 | } // function _polynomial_regression() |
---|
| 199 | |
---|
| 200 | |
---|
| 201 | /** |
---|
| 202 | * Define the regression and calculate the goodness of fit for a set of X and Y data values |
---|
| 203 | * |
---|
| 204 | * @param int $order Order of Polynomial for this regression |
---|
| 205 | * @param float[] $yValues The set of Y-values for this regression |
---|
| 206 | * @param float[] $xValues The set of X-values for this regression |
---|
| 207 | * @param boolean $const |
---|
| 208 | */ |
---|
| 209 | function __construct($order, $yValues, $xValues=array(), $const=True) { |
---|
| 210 | if (parent::__construct($yValues, $xValues) !== False) { |
---|
| 211 | if ($order < $this->_valueCount) { |
---|
| 212 | $this->_bestFitType .= '_'.$order; |
---|
| 213 | $this->_order = $order; |
---|
| 214 | $this->_polynomial_regression($order, $yValues, $xValues, $const); |
---|
| 215 | if (($this->getGoodnessOfFit() < 0.0) || ($this->getGoodnessOfFit() > 1.0)) { |
---|
| 216 | $this->_error = True; |
---|
| 217 | } |
---|
| 218 | } else { |
---|
| 219 | $this->_error = True; |
---|
| 220 | } |
---|
| 221 | } |
---|
| 222 | } // function __construct() |
---|
| 223 | |
---|
| 224 | } // class polynomialBestFit |
---|