1 | <?php |
---|
2 | /** |
---|
3 | * PHPExcel |
---|
4 | * |
---|
5 | * Copyright (c) 2006 - 2014 PHPExcel |
---|
6 | * |
---|
7 | * This library is free software; you can redistribute it and/or |
---|
8 | * modify it under the terms of the GNU Lesser General Public |
---|
9 | * License as published by the Free Software Foundation; either |
---|
10 | * version 2.1 of the License, or (at your option) any later version. |
---|
11 | * |
---|
12 | * This library is distributed in the hope that it will be useful, |
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
15 | * Lesser General Public License for more details. |
---|
16 | * |
---|
17 | * You should have received a copy of the GNU Lesser General Public |
---|
18 | * License along with this library; if not, write to the Free Software |
---|
19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
---|
20 | * |
---|
21 | * @category PHPExcel |
---|
22 | * @package PHPExcel_Calculation |
---|
23 | * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel) |
---|
24 | * @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL |
---|
25 | * @version 1.8.0, 2014-03-02 |
---|
26 | */ |
---|
27 | |
---|
28 | |
---|
29 | /** PHPExcel root directory */ |
---|
30 | if (!defined('PHPEXCEL_ROOT')) { |
---|
31 | /** |
---|
32 | * @ignore |
---|
33 | */ |
---|
34 | define('PHPEXCEL_ROOT', dirname(__FILE__) . '/../../'); |
---|
35 | require(PHPEXCEL_ROOT . 'PHPExcel/Autoloader.php'); |
---|
36 | } |
---|
37 | |
---|
38 | |
---|
39 | require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/trendClass.php'; |
---|
40 | |
---|
41 | |
---|
42 | /** LOG_GAMMA_X_MAX_VALUE */ |
---|
43 | define('LOG_GAMMA_X_MAX_VALUE', 2.55e305); |
---|
44 | |
---|
45 | /** XMININ */ |
---|
46 | define('XMININ', 2.23e-308); |
---|
47 | |
---|
48 | /** EPS */ |
---|
49 | define('EPS', 2.22e-16); |
---|
50 | |
---|
51 | /** SQRT2PI */ |
---|
52 | define('SQRT2PI', 2.5066282746310005024157652848110452530069867406099); |
---|
53 | |
---|
54 | |
---|
55 | /** |
---|
56 | * PHPExcel_Calculation_Statistical |
---|
57 | * |
---|
58 | * @category PHPExcel |
---|
59 | * @package PHPExcel_Calculation |
---|
60 | * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel) |
---|
61 | */ |
---|
62 | class PHPExcel_Calculation_Statistical { |
---|
63 | |
---|
64 | |
---|
65 | private static function _checkTrendArrays(&$array1,&$array2) { |
---|
66 | if (!is_array($array1)) { $array1 = array($array1); } |
---|
67 | if (!is_array($array2)) { $array2 = array($array2); } |
---|
68 | |
---|
69 | $array1 = PHPExcel_Calculation_Functions::flattenArray($array1); |
---|
70 | $array2 = PHPExcel_Calculation_Functions::flattenArray($array2); |
---|
71 | foreach($array1 as $key => $value) { |
---|
72 | if ((is_bool($value)) || (is_string($value)) || (is_null($value))) { |
---|
73 | unset($array1[$key]); |
---|
74 | unset($array2[$key]); |
---|
75 | } |
---|
76 | } |
---|
77 | foreach($array2 as $key => $value) { |
---|
78 | if ((is_bool($value)) || (is_string($value)) || (is_null($value))) { |
---|
79 | unset($array1[$key]); |
---|
80 | unset($array2[$key]); |
---|
81 | } |
---|
82 | } |
---|
83 | $array1 = array_merge($array1); |
---|
84 | $array2 = array_merge($array2); |
---|
85 | |
---|
86 | return True; |
---|
87 | } // function _checkTrendArrays() |
---|
88 | |
---|
89 | |
---|
90 | /** |
---|
91 | * Beta function. |
---|
92 | * |
---|
93 | * @author Jaco van Kooten |
---|
94 | * |
---|
95 | * @param p require p>0 |
---|
96 | * @param q require q>0 |
---|
97 | * @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow |
---|
98 | */ |
---|
99 | private static function _beta($p, $q) { |
---|
100 | if ($p <= 0.0 || $q <= 0.0 || ($p + $q) > LOG_GAMMA_X_MAX_VALUE) { |
---|
101 | return 0.0; |
---|
102 | } else { |
---|
103 | return exp(self::_logBeta($p, $q)); |
---|
104 | } |
---|
105 | } // function _beta() |
---|
106 | |
---|
107 | |
---|
108 | /** |
---|
109 | * Incomplete beta function |
---|
110 | * |
---|
111 | * @author Jaco van Kooten |
---|
112 | * @author Paul Meagher |
---|
113 | * |
---|
114 | * The computation is based on formulas from Numerical Recipes, Chapter 6.4 (W.H. Press et al, 1992). |
---|
115 | * @param x require 0<=x<=1 |
---|
116 | * @param p require p>0 |
---|
117 | * @param q require q>0 |
---|
118 | * @return 0 if x<0, p<=0, q<=0 or p+q>2.55E305 and 1 if x>1 to avoid errors and over/underflow |
---|
119 | */ |
---|
120 | private static function _incompleteBeta($x, $p, $q) { |
---|
121 | if ($x <= 0.0) { |
---|
122 | return 0.0; |
---|
123 | } elseif ($x >= 1.0) { |
---|
124 | return 1.0; |
---|
125 | } elseif (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) { |
---|
126 | return 0.0; |
---|
127 | } |
---|
128 | $beta_gam = exp((0 - self::_logBeta($p, $q)) + $p * log($x) + $q * log(1.0 - $x)); |
---|
129 | if ($x < ($p + 1.0) / ($p + $q + 2.0)) { |
---|
130 | return $beta_gam * self::_betaFraction($x, $p, $q) / $p; |
---|
131 | } else { |
---|
132 | return 1.0 - ($beta_gam * self::_betaFraction(1 - $x, $q, $p) / $q); |
---|
133 | } |
---|
134 | } // function _incompleteBeta() |
---|
135 | |
---|
136 | |
---|
137 | // Function cache for _logBeta function |
---|
138 | private static $_logBetaCache_p = 0.0; |
---|
139 | private static $_logBetaCache_q = 0.0; |
---|
140 | private static $_logBetaCache_result = 0.0; |
---|
141 | |
---|
142 | /** |
---|
143 | * The natural logarithm of the beta function. |
---|
144 | * |
---|
145 | * @param p require p>0 |
---|
146 | * @param q require q>0 |
---|
147 | * @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow |
---|
148 | * @author Jaco van Kooten |
---|
149 | */ |
---|
150 | private static function _logBeta($p, $q) { |
---|
151 | if ($p != self::$_logBetaCache_p || $q != self::$_logBetaCache_q) { |
---|
152 | self::$_logBetaCache_p = $p; |
---|
153 | self::$_logBetaCache_q = $q; |
---|
154 | if (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) { |
---|
155 | self::$_logBetaCache_result = 0.0; |
---|
156 | } else { |
---|
157 | self::$_logBetaCache_result = self::_logGamma($p) + self::_logGamma($q) - self::_logGamma($p + $q); |
---|
158 | } |
---|
159 | } |
---|
160 | return self::$_logBetaCache_result; |
---|
161 | } // function _logBeta() |
---|
162 | |
---|
163 | |
---|
164 | /** |
---|
165 | * Evaluates of continued fraction part of incomplete beta function. |
---|
166 | * Based on an idea from Numerical Recipes (W.H. Press et al, 1992). |
---|
167 | * @author Jaco van Kooten |
---|
168 | */ |
---|
169 | private static function _betaFraction($x, $p, $q) { |
---|
170 | $c = 1.0; |
---|
171 | $sum_pq = $p + $q; |
---|
172 | $p_plus = $p + 1.0; |
---|
173 | $p_minus = $p - 1.0; |
---|
174 | $h = 1.0 - $sum_pq * $x / $p_plus; |
---|
175 | if (abs($h) < XMININ) { |
---|
176 | $h = XMININ; |
---|
177 | } |
---|
178 | $h = 1.0 / $h; |
---|
179 | $frac = $h; |
---|
180 | $m = 1; |
---|
181 | $delta = 0.0; |
---|
182 | while ($m <= MAX_ITERATIONS && abs($delta-1.0) > PRECISION ) { |
---|
183 | $m2 = 2 * $m; |
---|
184 | // even index for d |
---|
185 | $d = $m * ($q - $m) * $x / ( ($p_minus + $m2) * ($p + $m2)); |
---|
186 | $h = 1.0 + $d * $h; |
---|
187 | if (abs($h) < XMININ) { |
---|
188 | $h = XMININ; |
---|
189 | } |
---|
190 | $h = 1.0 / $h; |
---|
191 | $c = 1.0 + $d / $c; |
---|
192 | if (abs($c) < XMININ) { |
---|
193 | $c = XMININ; |
---|
194 | } |
---|
195 | $frac *= $h * $c; |
---|
196 | // odd index for d |
---|
197 | $d = -($p + $m) * ($sum_pq + $m) * $x / (($p + $m2) * ($p_plus + $m2)); |
---|
198 | $h = 1.0 + $d * $h; |
---|
199 | if (abs($h) < XMININ) { |
---|
200 | $h = XMININ; |
---|
201 | } |
---|
202 | $h = 1.0 / $h; |
---|
203 | $c = 1.0 + $d / $c; |
---|
204 | if (abs($c) < XMININ) { |
---|
205 | $c = XMININ; |
---|
206 | } |
---|
207 | $delta = $h * $c; |
---|
208 | $frac *= $delta; |
---|
209 | ++$m; |
---|
210 | } |
---|
211 | return $frac; |
---|
212 | } // function _betaFraction() |
---|
213 | |
---|
214 | |
---|
215 | /** |
---|
216 | * logGamma function |
---|
217 | * |
---|
218 | * @version 1.1 |
---|
219 | * @author Jaco van Kooten |
---|
220 | * |
---|
221 | * Original author was Jaco van Kooten. Ported to PHP by Paul Meagher. |
---|
222 | * |
---|
223 | * The natural logarithm of the gamma function. <br /> |
---|
224 | * Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz <br /> |
---|
225 | * Applied Mathematics Division <br /> |
---|
226 | * Argonne National Laboratory <br /> |
---|
227 | * Argonne, IL 60439 <br /> |
---|
228 | * <p> |
---|
229 | * References: |
---|
230 | * <ol> |
---|
231 | * <li>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural |
---|
232 | * Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.</li> |
---|
233 | * <li>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.</li> |
---|
234 | * <li>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.</li> |
---|
235 | * </ol> |
---|
236 | * </p> |
---|
237 | * <p> |
---|
238 | * From the original documentation: |
---|
239 | * </p> |
---|
240 | * <p> |
---|
241 | * This routine calculates the LOG(GAMMA) function for a positive real argument X. |
---|
242 | * Computation is based on an algorithm outlined in references 1 and 2. |
---|
243 | * The program uses rational functions that theoretically approximate LOG(GAMMA) |
---|
244 | * to at least 18 significant decimal digits. The approximation for X > 12 is from |
---|
245 | * reference 3, while approximations for X < 12.0 are similar to those in reference |
---|
246 | * 1, but are unpublished. The accuracy achieved depends on the arithmetic system, |
---|
247 | * the compiler, the intrinsic functions, and proper selection of the |
---|
248 | * machine-dependent constants. |
---|
249 | * </p> |
---|
250 | * <p> |
---|
251 | * Error returns: <br /> |
---|
252 | * The program returns the value XINF for X .LE. 0.0 or when overflow would occur. |
---|
253 | * The computation is believed to be free of underflow and overflow. |
---|
254 | * </p> |
---|
255 | * @return MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305 |
---|
256 | */ |
---|
257 | |
---|
258 | // Function cache for logGamma |
---|
259 | private static $_logGammaCache_result = 0.0; |
---|
260 | private static $_logGammaCache_x = 0.0; |
---|
261 | |
---|
262 | private static function _logGamma($x) { |
---|
263 | // Log Gamma related constants |
---|
264 | static $lg_d1 = -0.5772156649015328605195174; |
---|
265 | static $lg_d2 = 0.4227843350984671393993777; |
---|
266 | static $lg_d4 = 1.791759469228055000094023; |
---|
267 | |
---|
268 | static $lg_p1 = array( 4.945235359296727046734888, |
---|
269 | 201.8112620856775083915565, |
---|
270 | 2290.838373831346393026739, |
---|
271 | 11319.67205903380828685045, |
---|
272 | 28557.24635671635335736389, |
---|
273 | 38484.96228443793359990269, |
---|
274 | 26377.48787624195437963534, |
---|
275 | 7225.813979700288197698961 ); |
---|
276 | static $lg_p2 = array( 4.974607845568932035012064, |
---|
277 | 542.4138599891070494101986, |
---|
278 | 15506.93864978364947665077, |
---|
279 | 184793.2904445632425417223, |
---|
280 | 1088204.76946882876749847, |
---|
281 | 3338152.967987029735917223, |
---|
282 | 5106661.678927352456275255, |
---|
283 | 3074109.054850539556250927 ); |
---|
284 | static $lg_p4 = array( 14745.02166059939948905062, |
---|
285 | 2426813.369486704502836312, |
---|
286 | 121475557.4045093227939592, |
---|
287 | 2663432449.630976949898078, |
---|
288 | 29403789566.34553899906876, |
---|
289 | 170266573776.5398868392998, |
---|
290 | 492612579337.743088758812, |
---|
291 | 560625185622.3951465078242 ); |
---|
292 | |
---|
293 | static $lg_q1 = array( 67.48212550303777196073036, |
---|
294 | 1113.332393857199323513008, |
---|
295 | 7738.757056935398733233834, |
---|
296 | 27639.87074403340708898585, |
---|
297 | 54993.10206226157329794414, |
---|
298 | 61611.22180066002127833352, |
---|
299 | 36351.27591501940507276287, |
---|
300 | 8785.536302431013170870835 ); |
---|
301 | static $lg_q2 = array( 183.0328399370592604055942, |
---|
302 | 7765.049321445005871323047, |
---|
303 | 133190.3827966074194402448, |
---|
304 | 1136705.821321969608938755, |
---|
305 | 5267964.117437946917577538, |
---|
306 | 13467014.54311101692290052, |
---|
307 | 17827365.30353274213975932, |
---|
308 | 9533095.591844353613395747 ); |
---|
309 | static $lg_q4 = array( 2690.530175870899333379843, |
---|
310 | 639388.5654300092398984238, |
---|
311 | 41355999.30241388052042842, |
---|
312 | 1120872109.61614794137657, |
---|
313 | 14886137286.78813811542398, |
---|
314 | 101680358627.2438228077304, |
---|
315 | 341747634550.7377132798597, |
---|
316 | 446315818741.9713286462081 ); |
---|
317 | |
---|
318 | static $lg_c = array( -0.001910444077728, |
---|
319 | 8.4171387781295e-4, |
---|
320 | -5.952379913043012e-4, |
---|
321 | 7.93650793500350248e-4, |
---|
322 | -0.002777777777777681622553, |
---|
323 | 0.08333333333333333331554247, |
---|
324 | 0.0057083835261 ); |
---|
325 | |
---|
326 | // Rough estimate of the fourth root of logGamma_xBig |
---|
327 | static $lg_frtbig = 2.25e76; |
---|
328 | static $pnt68 = 0.6796875; |
---|
329 | |
---|
330 | |
---|
331 | if ($x == self::$_logGammaCache_x) { |
---|
332 | return self::$_logGammaCache_result; |
---|
333 | } |
---|
334 | $y = $x; |
---|
335 | if ($y > 0.0 && $y <= LOG_GAMMA_X_MAX_VALUE) { |
---|
336 | if ($y <= EPS) { |
---|
337 | $res = -log(y); |
---|
338 | } elseif ($y <= 1.5) { |
---|
339 | // --------------------- |
---|
340 | // EPS .LT. X .LE. 1.5 |
---|
341 | // --------------------- |
---|
342 | if ($y < $pnt68) { |
---|
343 | $corr = -log($y); |
---|
344 | $xm1 = $y; |
---|
345 | } else { |
---|
346 | $corr = 0.0; |
---|
347 | $xm1 = $y - 1.0; |
---|
348 | } |
---|
349 | if ($y <= 0.5 || $y >= $pnt68) { |
---|
350 | $xden = 1.0; |
---|
351 | $xnum = 0.0; |
---|
352 | for ($i = 0; $i < 8; ++$i) { |
---|
353 | $xnum = $xnum * $xm1 + $lg_p1[$i]; |
---|
354 | $xden = $xden * $xm1 + $lg_q1[$i]; |
---|
355 | } |
---|
356 | $res = $corr + $xm1 * ($lg_d1 + $xm1 * ($xnum / $xden)); |
---|
357 | } else { |
---|
358 | $xm2 = $y - 1.0; |
---|
359 | $xden = 1.0; |
---|
360 | $xnum = 0.0; |
---|
361 | for ($i = 0; $i < 8; ++$i) { |
---|
362 | $xnum = $xnum * $xm2 + $lg_p2[$i]; |
---|
363 | $xden = $xden * $xm2 + $lg_q2[$i]; |
---|
364 | } |
---|
365 | $res = $corr + $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden)); |
---|
366 | } |
---|
367 | } elseif ($y <= 4.0) { |
---|
368 | // --------------------- |
---|
369 | // 1.5 .LT. X .LE. 4.0 |
---|
370 | // --------------------- |
---|
371 | $xm2 = $y - 2.0; |
---|
372 | $xden = 1.0; |
---|
373 | $xnum = 0.0; |
---|
374 | for ($i = 0; $i < 8; ++$i) { |
---|
375 | $xnum = $xnum * $xm2 + $lg_p2[$i]; |
---|
376 | $xden = $xden * $xm2 + $lg_q2[$i]; |
---|
377 | } |
---|
378 | $res = $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden)); |
---|
379 | } elseif ($y <= 12.0) { |
---|
380 | // ---------------------- |
---|
381 | // 4.0 .LT. X .LE. 12.0 |
---|
382 | // ---------------------- |
---|
383 | $xm4 = $y - 4.0; |
---|
384 | $xden = -1.0; |
---|
385 | $xnum = 0.0; |
---|
386 | for ($i = 0; $i < 8; ++$i) { |
---|
387 | $xnum = $xnum * $xm4 + $lg_p4[$i]; |
---|
388 | $xden = $xden * $xm4 + $lg_q4[$i]; |
---|
389 | } |
---|
390 | $res = $lg_d4 + $xm4 * ($xnum / $xden); |
---|
391 | } else { |
---|
392 | // --------------------------------- |
---|
393 | // Evaluate for argument .GE. 12.0 |
---|
394 | // --------------------------------- |
---|
395 | $res = 0.0; |
---|
396 | if ($y <= $lg_frtbig) { |
---|
397 | $res = $lg_c[6]; |
---|
398 | $ysq = $y * $y; |
---|
399 | for ($i = 0; $i < 6; ++$i) |
---|
400 | $res = $res / $ysq + $lg_c[$i]; |
---|
401 | } |
---|
402 | $res /= $y; |
---|
403 | $corr = log($y); |
---|
404 | $res = $res + log(SQRT2PI) - 0.5 * $corr; |
---|
405 | $res += $y * ($corr - 1.0); |
---|
406 | } |
---|
407 | } else { |
---|
408 | // -------------------------- |
---|
409 | // Return for bad arguments |
---|
410 | // -------------------------- |
---|
411 | $res = MAX_VALUE; |
---|
412 | } |
---|
413 | // ------------------------------ |
---|
414 | // Final adjustments and return |
---|
415 | // ------------------------------ |
---|
416 | self::$_logGammaCache_x = $x; |
---|
417 | self::$_logGammaCache_result = $res; |
---|
418 | return $res; |
---|
419 | } // function _logGamma() |
---|
420 | |
---|
421 | |
---|
422 | // |
---|
423 | // Private implementation of the incomplete Gamma function |
---|
424 | // |
---|
425 | private static function _incompleteGamma($a,$x) { |
---|
426 | static $max = 32; |
---|
427 | $summer = 0; |
---|
428 | for ($n=0; $n<=$max; ++$n) { |
---|
429 | $divisor = $a; |
---|
430 | for ($i=1; $i<=$n; ++$i) { |
---|
431 | $divisor *= ($a + $i); |
---|
432 | } |
---|
433 | $summer += (pow($x,$n) / $divisor); |
---|
434 | } |
---|
435 | return pow($x,$a) * exp(0-$x) * $summer; |
---|
436 | } // function _incompleteGamma() |
---|
437 | |
---|
438 | |
---|
439 | // |
---|
440 | // Private implementation of the Gamma function |
---|
441 | // |
---|
442 | private static function _gamma($data) { |
---|
443 | if ($data == 0.0) return 0; |
---|
444 | |
---|
445 | static $p0 = 1.000000000190015; |
---|
446 | static $p = array ( 1 => 76.18009172947146, |
---|
447 | 2 => -86.50532032941677, |
---|
448 | 3 => 24.01409824083091, |
---|
449 | 4 => -1.231739572450155, |
---|
450 | 5 => 1.208650973866179e-3, |
---|
451 | 6 => -5.395239384953e-6 |
---|
452 | ); |
---|
453 | |
---|
454 | $y = $x = $data; |
---|
455 | $tmp = $x + 5.5; |
---|
456 | $tmp -= ($x + 0.5) * log($tmp); |
---|
457 | |
---|
458 | $summer = $p0; |
---|
459 | for ($j=1;$j<=6;++$j) { |
---|
460 | $summer += ($p[$j] / ++$y); |
---|
461 | } |
---|
462 | return exp(0 - $tmp + log(SQRT2PI * $summer / $x)); |
---|
463 | } // function _gamma() |
---|
464 | |
---|
465 | |
---|
466 | /*************************************************************************** |
---|
467 | * inverse_ncdf.php |
---|
468 | * ------------------- |
---|
469 | * begin : Friday, January 16, 2004 |
---|
470 | * copyright : (C) 2004 Michael Nickerson |
---|
471 | * email : nickersonm@yahoo.com |
---|
472 | * |
---|
473 | ***************************************************************************/ |
---|
474 | private static function _inverse_ncdf($p) { |
---|
475 | // Inverse ncdf approximation by Peter J. Acklam, implementation adapted to |
---|
476 | // PHP by Michael Nickerson, using Dr. Thomas Ziegler's C implementation as |
---|
477 | // a guide. http://home.online.no/~pjacklam/notes/invnorm/index.html |
---|
478 | // I have not checked the accuracy of this implementation. Be aware that PHP |
---|
479 | // will truncate the coeficcients to 14 digits. |
---|
480 | |
---|
481 | // You have permission to use and distribute this function freely for |
---|
482 | // whatever purpose you want, but please show common courtesy and give credit |
---|
483 | // where credit is due. |
---|
484 | |
---|
485 | // Input paramater is $p - probability - where 0 < p < 1. |
---|
486 | |
---|
487 | // Coefficients in rational approximations |
---|
488 | static $a = array( 1 => -3.969683028665376e+01, |
---|
489 | 2 => 2.209460984245205e+02, |
---|
490 | 3 => -2.759285104469687e+02, |
---|
491 | 4 => 1.383577518672690e+02, |
---|
492 | 5 => -3.066479806614716e+01, |
---|
493 | 6 => 2.506628277459239e+00 |
---|
494 | ); |
---|
495 | |
---|
496 | static $b = array( 1 => -5.447609879822406e+01, |
---|
497 | 2 => 1.615858368580409e+02, |
---|
498 | 3 => -1.556989798598866e+02, |
---|
499 | 4 => 6.680131188771972e+01, |
---|
500 | 5 => -1.328068155288572e+01 |
---|
501 | ); |
---|
502 | |
---|
503 | static $c = array( 1 => -7.784894002430293e-03, |
---|
504 | 2 => -3.223964580411365e-01, |
---|
505 | 3 => -2.400758277161838e+00, |
---|
506 | 4 => -2.549732539343734e+00, |
---|
507 | 5 => 4.374664141464968e+00, |
---|
508 | 6 => 2.938163982698783e+00 |
---|
509 | ); |
---|
510 | |
---|
511 | static $d = array( 1 => 7.784695709041462e-03, |
---|
512 | 2 => 3.224671290700398e-01, |
---|
513 | 3 => 2.445134137142996e+00, |
---|
514 | 4 => 3.754408661907416e+00 |
---|
515 | ); |
---|
516 | |
---|
517 | // Define lower and upper region break-points. |
---|
518 | $p_low = 0.02425; //Use lower region approx. below this |
---|
519 | $p_high = 1 - $p_low; //Use upper region approx. above this |
---|
520 | |
---|
521 | if (0 < $p && $p < $p_low) { |
---|
522 | // Rational approximation for lower region. |
---|
523 | $q = sqrt(-2 * log($p)); |
---|
524 | return ((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) / |
---|
525 | (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1); |
---|
526 | } elseif ($p_low <= $p && $p <= $p_high) { |
---|
527 | // Rational approximation for central region. |
---|
528 | $q = $p - 0.5; |
---|
529 | $r = $q * $q; |
---|
530 | return ((((($a[1] * $r + $a[2]) * $r + $a[3]) * $r + $a[4]) * $r + $a[5]) * $r + $a[6]) * $q / |
---|
531 | ((((($b[1] * $r + $b[2]) * $r + $b[3]) * $r + $b[4]) * $r + $b[5]) * $r + 1); |
---|
532 | } elseif ($p_high < $p && $p < 1) { |
---|
533 | // Rational approximation for upper region. |
---|
534 | $q = sqrt(-2 * log(1 - $p)); |
---|
535 | return -((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) / |
---|
536 | (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1); |
---|
537 | } |
---|
538 | // If 0 < p < 1, return a null value |
---|
539 | return PHPExcel_Calculation_Functions::NULL(); |
---|
540 | } // function _inverse_ncdf() |
---|
541 | |
---|
542 | |
---|
543 | private static function _inverse_ncdf2($prob) { |
---|
544 | // Approximation of inverse standard normal CDF developed by |
---|
545 | // B. Moro, "The Full Monte," Risk 8(2), Feb 1995, 57-58. |
---|
546 | |
---|
547 | $a1 = 2.50662823884; |
---|
548 | $a2 = -18.61500062529; |
---|
549 | $a3 = 41.39119773534; |
---|
550 | $a4 = -25.44106049637; |
---|
551 | |
---|
552 | $b1 = -8.4735109309; |
---|
553 | $b2 = 23.08336743743; |
---|
554 | $b3 = -21.06224101826; |
---|
555 | $b4 = 3.13082909833; |
---|
556 | |
---|
557 | $c1 = 0.337475482272615; |
---|
558 | $c2 = 0.976169019091719; |
---|
559 | $c3 = 0.160797971491821; |
---|
560 | $c4 = 2.76438810333863E-02; |
---|
561 | $c5 = 3.8405729373609E-03; |
---|
562 | $c6 = 3.951896511919E-04; |
---|
563 | $c7 = 3.21767881768E-05; |
---|
564 | $c8 = 2.888167364E-07; |
---|
565 | $c9 = 3.960315187E-07; |
---|
566 | |
---|
567 | $y = $prob - 0.5; |
---|
568 | if (abs($y) < 0.42) { |
---|
569 | $z = ($y * $y); |
---|
570 | $z = $y * ((($a4 * $z + $a3) * $z + $a2) * $z + $a1) / (((($b4 * $z + $b3) * $z + $b2) * $z + $b1) * $z + 1); |
---|
571 | } else { |
---|
572 | if ($y > 0) { |
---|
573 | $z = log(-log(1 - $prob)); |
---|
574 | } else { |
---|
575 | $z = log(-log($prob)); |
---|
576 | } |
---|
577 | $z = $c1 + $z * ($c2 + $z * ($c3 + $z * ($c4 + $z * ($c5 + $z * ($c6 + $z * ($c7 + $z * ($c8 + $z * $c9))))))); |
---|
578 | if ($y < 0) { |
---|
579 | $z = -$z; |
---|
580 | } |
---|
581 | } |
---|
582 | return $z; |
---|
583 | } // function _inverse_ncdf2() |
---|
584 | |
---|
585 | |
---|
586 | private static function _inverse_ncdf3($p) { |
---|
587 | // ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3. |
---|
588 | // Produces the normal deviate Z corresponding to a given lower |
---|
589 | // tail area of P; Z is accurate to about 1 part in 10**16. |
---|
590 | // |
---|
591 | // This is a PHP version of the original FORTRAN code that can |
---|
592 | // be found at http://lib.stat.cmu.edu/apstat/ |
---|
593 | $split1 = 0.425; |
---|
594 | $split2 = 5; |
---|
595 | $const1 = 0.180625; |
---|
596 | $const2 = 1.6; |
---|
597 | |
---|
598 | // coefficients for p close to 0.5 |
---|
599 | $a0 = 3.3871328727963666080; |
---|
600 | $a1 = 1.3314166789178437745E+2; |
---|
601 | $a2 = 1.9715909503065514427E+3; |
---|
602 | $a3 = 1.3731693765509461125E+4; |
---|
603 | $a4 = 4.5921953931549871457E+4; |
---|
604 | $a5 = 6.7265770927008700853E+4; |
---|
605 | $a6 = 3.3430575583588128105E+4; |
---|
606 | $a7 = 2.5090809287301226727E+3; |
---|
607 | |
---|
608 | $b1 = 4.2313330701600911252E+1; |
---|
609 | $b2 = 6.8718700749205790830E+2; |
---|
610 | $b3 = 5.3941960214247511077E+3; |
---|
611 | $b4 = 2.1213794301586595867E+4; |
---|
612 | $b5 = 3.9307895800092710610E+4; |
---|
613 | $b6 = 2.8729085735721942674E+4; |
---|
614 | $b7 = 5.2264952788528545610E+3; |
---|
615 | |
---|
616 | // coefficients for p not close to 0, 0.5 or 1. |
---|
617 | $c0 = 1.42343711074968357734; |
---|
618 | $c1 = 4.63033784615654529590; |
---|
619 | $c2 = 5.76949722146069140550; |
---|
620 | $c3 = 3.64784832476320460504; |
---|
621 | $c4 = 1.27045825245236838258; |
---|
622 | $c5 = 2.41780725177450611770E-1; |
---|
623 | $c6 = 2.27238449892691845833E-2; |
---|
624 | $c7 = 7.74545014278341407640E-4; |
---|
625 | |
---|
626 | $d1 = 2.05319162663775882187; |
---|
627 | $d2 = 1.67638483018380384940; |
---|
628 | $d3 = 6.89767334985100004550E-1; |
---|
629 | $d4 = 1.48103976427480074590E-1; |
---|
630 | $d5 = 1.51986665636164571966E-2; |
---|
631 | $d6 = 5.47593808499534494600E-4; |
---|
632 | $d7 = 1.05075007164441684324E-9; |
---|
633 | |
---|
634 | // coefficients for p near 0 or 1. |
---|
635 | $e0 = 6.65790464350110377720; |
---|
636 | $e1 = 5.46378491116411436990; |
---|
637 | $e2 = 1.78482653991729133580; |
---|
638 | $e3 = 2.96560571828504891230E-1; |
---|
639 | $e4 = 2.65321895265761230930E-2; |
---|
640 | $e5 = 1.24266094738807843860E-3; |
---|
641 | $e6 = 2.71155556874348757815E-5; |
---|
642 | $e7 = 2.01033439929228813265E-7; |
---|
643 | |
---|
644 | $f1 = 5.99832206555887937690E-1; |
---|
645 | $f2 = 1.36929880922735805310E-1; |
---|
646 | $f3 = 1.48753612908506148525E-2; |
---|
647 | $f4 = 7.86869131145613259100E-4; |
---|
648 | $f5 = 1.84631831751005468180E-5; |
---|
649 | $f6 = 1.42151175831644588870E-7; |
---|
650 | $f7 = 2.04426310338993978564E-15; |
---|
651 | |
---|
652 | $q = $p - 0.5; |
---|
653 | |
---|
654 | // computation for p close to 0.5 |
---|
655 | if (abs($q) <= split1) { |
---|
656 | $R = $const1 - $q * $q; |
---|
657 | $z = $q * ((((((($a7 * $R + $a6) * $R + $a5) * $R + $a4) * $R + $a3) * $R + $a2) * $R + $a1) * $R + $a0) / |
---|
658 | ((((((($b7 * $R + $b6) * $R + $b5) * $R + $b4) * $R + $b3) * $R + $b2) * $R + $b1) * $R + 1); |
---|
659 | } else { |
---|
660 | if ($q < 0) { |
---|
661 | $R = $p; |
---|
662 | } else { |
---|
663 | $R = 1 - $p; |
---|
664 | } |
---|
665 | $R = pow(-log($R),2); |
---|
666 | |
---|
667 | // computation for p not close to 0, 0.5 or 1. |
---|
668 | If ($R <= $split2) { |
---|
669 | $R = $R - $const2; |
---|
670 | $z = ((((((($c7 * $R + $c6) * $R + $c5) * $R + $c4) * $R + $c3) * $R + $c2) * $R + $c1) * $R + $c0) / |
---|
671 | ((((((($d7 * $R + $d6) * $R + $d5) * $R + $d4) * $R + $d3) * $R + $d2) * $R + $d1) * $R + 1); |
---|
672 | } else { |
---|
673 | // computation for p near 0 or 1. |
---|
674 | $R = $R - $split2; |
---|
675 | $z = ((((((($e7 * $R + $e6) * $R + $e5) * $R + $e4) * $R + $e3) * $R + $e2) * $R + $e1) * $R + $e0) / |
---|
676 | ((((((($f7 * $R + $f6) * $R + $f5) * $R + $f4) * $R + $f3) * $R + $f2) * $R + $f1) * $R + 1); |
---|
677 | } |
---|
678 | if ($q < 0) { |
---|
679 | $z = -$z; |
---|
680 | } |
---|
681 | } |
---|
682 | return $z; |
---|
683 | } // function _inverse_ncdf3() |
---|
684 | |
---|
685 | |
---|
686 | /** |
---|
687 | * AVEDEV |
---|
688 | * |
---|
689 | * Returns the average of the absolute deviations of data points from their mean. |
---|
690 | * AVEDEV is a measure of the variability in a data set. |
---|
691 | * |
---|
692 | * Excel Function: |
---|
693 | * AVEDEV(value1[,value2[, ...]]) |
---|
694 | * |
---|
695 | * @access public |
---|
696 | * @category Statistical Functions |
---|
697 | * @param mixed $arg,... Data values |
---|
698 | * @return float |
---|
699 | */ |
---|
700 | public static function AVEDEV() { |
---|
701 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
702 | |
---|
703 | // Return value |
---|
704 | $returnValue = null; |
---|
705 | |
---|
706 | $aMean = self::AVERAGE($aArgs); |
---|
707 | if ($aMean != PHPExcel_Calculation_Functions::DIV0()) { |
---|
708 | $aCount = 0; |
---|
709 | foreach ($aArgs as $k => $arg) { |
---|
710 | if ((is_bool($arg)) && |
---|
711 | ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
---|
712 | $arg = (integer) $arg; |
---|
713 | } |
---|
714 | // Is it a numeric value? |
---|
715 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
716 | if (is_null($returnValue)) { |
---|
717 | $returnValue = abs($arg - $aMean); |
---|
718 | } else { |
---|
719 | $returnValue += abs($arg - $aMean); |
---|
720 | } |
---|
721 | ++$aCount; |
---|
722 | } |
---|
723 | } |
---|
724 | |
---|
725 | // Return |
---|
726 | if ($aCount == 0) { |
---|
727 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
728 | } |
---|
729 | return $returnValue / $aCount; |
---|
730 | } |
---|
731 | return PHPExcel_Calculation_Functions::NaN(); |
---|
732 | } // function AVEDEV() |
---|
733 | |
---|
734 | |
---|
735 | /** |
---|
736 | * AVERAGE |
---|
737 | * |
---|
738 | * Returns the average (arithmetic mean) of the arguments |
---|
739 | * |
---|
740 | * Excel Function: |
---|
741 | * AVERAGE(value1[,value2[, ...]]) |
---|
742 | * |
---|
743 | * @access public |
---|
744 | * @category Statistical Functions |
---|
745 | * @param mixed $arg,... Data values |
---|
746 | * @return float |
---|
747 | */ |
---|
748 | public static function AVERAGE() { |
---|
749 | $returnValue = $aCount = 0; |
---|
750 | |
---|
751 | // Loop through arguments |
---|
752 | foreach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) { |
---|
753 | if ((is_bool($arg)) && |
---|
754 | ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
---|
755 | $arg = (integer) $arg; |
---|
756 | } |
---|
757 | // Is it a numeric value? |
---|
758 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
759 | if (is_null($returnValue)) { |
---|
760 | $returnValue = $arg; |
---|
761 | } else { |
---|
762 | $returnValue += $arg; |
---|
763 | } |
---|
764 | ++$aCount; |
---|
765 | } |
---|
766 | } |
---|
767 | |
---|
768 | // Return |
---|
769 | if ($aCount > 0) { |
---|
770 | return $returnValue / $aCount; |
---|
771 | } else { |
---|
772 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
773 | } |
---|
774 | } // function AVERAGE() |
---|
775 | |
---|
776 | |
---|
777 | /** |
---|
778 | * AVERAGEA |
---|
779 | * |
---|
780 | * Returns the average of its arguments, including numbers, text, and logical values |
---|
781 | * |
---|
782 | * Excel Function: |
---|
783 | * AVERAGEA(value1[,value2[, ...]]) |
---|
784 | * |
---|
785 | * @access public |
---|
786 | * @category Statistical Functions |
---|
787 | * @param mixed $arg,... Data values |
---|
788 | * @return float |
---|
789 | */ |
---|
790 | public static function AVERAGEA() { |
---|
791 | // Return value |
---|
792 | $returnValue = null; |
---|
793 | |
---|
794 | $aCount = 0; |
---|
795 | // Loop through arguments |
---|
796 | foreach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) { |
---|
797 | if ((is_bool($arg)) && |
---|
798 | (!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
---|
799 | } else { |
---|
800 | if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { |
---|
801 | if (is_bool($arg)) { |
---|
802 | $arg = (integer) $arg; |
---|
803 | } elseif (is_string($arg)) { |
---|
804 | $arg = 0; |
---|
805 | } |
---|
806 | if (is_null($returnValue)) { |
---|
807 | $returnValue = $arg; |
---|
808 | } else { |
---|
809 | $returnValue += $arg; |
---|
810 | } |
---|
811 | ++$aCount; |
---|
812 | } |
---|
813 | } |
---|
814 | } |
---|
815 | |
---|
816 | // Return |
---|
817 | if ($aCount > 0) { |
---|
818 | return $returnValue / $aCount; |
---|
819 | } else { |
---|
820 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
821 | } |
---|
822 | } // function AVERAGEA() |
---|
823 | |
---|
824 | |
---|
825 | /** |
---|
826 | * AVERAGEIF |
---|
827 | * |
---|
828 | * Returns the average value from a range of cells that contain numbers within the list of arguments |
---|
829 | * |
---|
830 | * Excel Function: |
---|
831 | * AVERAGEIF(value1[,value2[, ...]],condition) |
---|
832 | * |
---|
833 | * @access public |
---|
834 | * @category Mathematical and Trigonometric Functions |
---|
835 | * @param mixed $arg,... Data values |
---|
836 | * @param string $condition The criteria that defines which cells will be checked. |
---|
837 | * @param mixed[] $averageArgs Data values |
---|
838 | * @return float |
---|
839 | */ |
---|
840 | public static function AVERAGEIF($aArgs,$condition,$averageArgs = array()) { |
---|
841 | // Return value |
---|
842 | $returnValue = 0; |
---|
843 | |
---|
844 | $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs); |
---|
845 | $averageArgs = PHPExcel_Calculation_Functions::flattenArray($averageArgs); |
---|
846 | if (empty($averageArgs)) { |
---|
847 | $averageArgs = $aArgs; |
---|
848 | } |
---|
849 | $condition = PHPExcel_Calculation_Functions::_ifCondition($condition); |
---|
850 | // Loop through arguments |
---|
851 | $aCount = 0; |
---|
852 | foreach ($aArgs as $key => $arg) { |
---|
853 | if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); } |
---|
854 | $testCondition = '='.$arg.$condition; |
---|
855 | if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) { |
---|
856 | if ((is_null($returnValue)) || ($arg > $returnValue)) { |
---|
857 | $returnValue += $arg; |
---|
858 | ++$aCount; |
---|
859 | } |
---|
860 | } |
---|
861 | } |
---|
862 | |
---|
863 | // Return |
---|
864 | if ($aCount > 0) { |
---|
865 | return $returnValue / $aCount; |
---|
866 | } else { |
---|
867 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
868 | } |
---|
869 | } // function AVERAGEIF() |
---|
870 | |
---|
871 | |
---|
872 | /** |
---|
873 | * BETADIST |
---|
874 | * |
---|
875 | * Returns the beta distribution. |
---|
876 | * |
---|
877 | * @param float $value Value at which you want to evaluate the distribution |
---|
878 | * @param float $alpha Parameter to the distribution |
---|
879 | * @param float $beta Parameter to the distribution |
---|
880 | * @param boolean $cumulative |
---|
881 | * @return float |
---|
882 | * |
---|
883 | */ |
---|
884 | public static function BETADIST($value,$alpha,$beta,$rMin=0,$rMax=1) { |
---|
885 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
886 | $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
---|
887 | $beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta); |
---|
888 | $rMin = PHPExcel_Calculation_Functions::flattenSingleValue($rMin); |
---|
889 | $rMax = PHPExcel_Calculation_Functions::flattenSingleValue($rMax); |
---|
890 | |
---|
891 | if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) { |
---|
892 | if (($value < $rMin) || ($value > $rMax) || ($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax)) { |
---|
893 | return PHPExcel_Calculation_Functions::NaN(); |
---|
894 | } |
---|
895 | if ($rMin > $rMax) { |
---|
896 | $tmp = $rMin; |
---|
897 | $rMin = $rMax; |
---|
898 | $rMax = $tmp; |
---|
899 | } |
---|
900 | $value -= $rMin; |
---|
901 | $value /= ($rMax - $rMin); |
---|
902 | return self::_incompleteBeta($value,$alpha,$beta); |
---|
903 | } |
---|
904 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
905 | } // function BETADIST() |
---|
906 | |
---|
907 | |
---|
908 | /** |
---|
909 | * BETAINV |
---|
910 | * |
---|
911 | * Returns the inverse of the beta distribution. |
---|
912 | * |
---|
913 | * @param float $probability Probability at which you want to evaluate the distribution |
---|
914 | * @param float $alpha Parameter to the distribution |
---|
915 | * @param float $beta Parameter to the distribution |
---|
916 | * @param float $rMin Minimum value |
---|
917 | * @param float $rMax Maximum value |
---|
918 | * @param boolean $cumulative |
---|
919 | * @return float |
---|
920 | * |
---|
921 | */ |
---|
922 | public static function BETAINV($probability,$alpha,$beta,$rMin=0,$rMax=1) { |
---|
923 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
924 | $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
---|
925 | $beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta); |
---|
926 | $rMin = PHPExcel_Calculation_Functions::flattenSingleValue($rMin); |
---|
927 | $rMax = PHPExcel_Calculation_Functions::flattenSingleValue($rMax); |
---|
928 | |
---|
929 | if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) { |
---|
930 | if (($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax) || ($probability <= 0) || ($probability > 1)) { |
---|
931 | return PHPExcel_Calculation_Functions::NaN(); |
---|
932 | } |
---|
933 | if ($rMin > $rMax) { |
---|
934 | $tmp = $rMin; |
---|
935 | $rMin = $rMax; |
---|
936 | $rMax = $tmp; |
---|
937 | } |
---|
938 | $a = 0; |
---|
939 | $b = 2; |
---|
940 | |
---|
941 | $i = 0; |
---|
942 | while ((($b - $a) > PRECISION) && ($i++ < MAX_ITERATIONS)) { |
---|
943 | $guess = ($a + $b) / 2; |
---|
944 | $result = self::BETADIST($guess, $alpha, $beta); |
---|
945 | if (($result == $probability) || ($result == 0)) { |
---|
946 | $b = $a; |
---|
947 | } elseif ($result > $probability) { |
---|
948 | $b = $guess; |
---|
949 | } else { |
---|
950 | $a = $guess; |
---|
951 | } |
---|
952 | } |
---|
953 | if ($i == MAX_ITERATIONS) { |
---|
954 | return PHPExcel_Calculation_Functions::NA(); |
---|
955 | } |
---|
956 | return round($rMin + $guess * ($rMax - $rMin),12); |
---|
957 | } |
---|
958 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
959 | } // function BETAINV() |
---|
960 | |
---|
961 | |
---|
962 | /** |
---|
963 | * BINOMDIST |
---|
964 | * |
---|
965 | * Returns the individual term binomial distribution probability. Use BINOMDIST in problems with |
---|
966 | * a fixed number of tests or trials, when the outcomes of any trial are only success or failure, |
---|
967 | * when trials are independent, and when the probability of success is constant throughout the |
---|
968 | * experiment. For example, BINOMDIST can calculate the probability that two of the next three |
---|
969 | * babies born are male. |
---|
970 | * |
---|
971 | * @param float $value Number of successes in trials |
---|
972 | * @param float $trials Number of trials |
---|
973 | * @param float $probability Probability of success on each trial |
---|
974 | * @param boolean $cumulative |
---|
975 | * @return float |
---|
976 | * |
---|
977 | * @todo Cumulative distribution function |
---|
978 | * |
---|
979 | */ |
---|
980 | public static function BINOMDIST($value, $trials, $probability, $cumulative) { |
---|
981 | $value = floor(PHPExcel_Calculation_Functions::flattenSingleValue($value)); |
---|
982 | $trials = floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials)); |
---|
983 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
984 | |
---|
985 | if ((is_numeric($value)) && (is_numeric($trials)) && (is_numeric($probability))) { |
---|
986 | if (($value < 0) || ($value > $trials)) { |
---|
987 | return PHPExcel_Calculation_Functions::NaN(); |
---|
988 | } |
---|
989 | if (($probability < 0) || ($probability > 1)) { |
---|
990 | return PHPExcel_Calculation_Functions::NaN(); |
---|
991 | } |
---|
992 | if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
---|
993 | if ($cumulative) { |
---|
994 | $summer = 0; |
---|
995 | for ($i = 0; $i <= $value; ++$i) { |
---|
996 | $summer += PHPExcel_Calculation_MathTrig::COMBIN($trials,$i) * pow($probability,$i) * pow(1 - $probability,$trials - $i); |
---|
997 | } |
---|
998 | return $summer; |
---|
999 | } else { |
---|
1000 | return PHPExcel_Calculation_MathTrig::COMBIN($trials,$value) * pow($probability,$value) * pow(1 - $probability,$trials - $value) ; |
---|
1001 | } |
---|
1002 | } |
---|
1003 | } |
---|
1004 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1005 | } // function BINOMDIST() |
---|
1006 | |
---|
1007 | |
---|
1008 | /** |
---|
1009 | * CHIDIST |
---|
1010 | * |
---|
1011 | * Returns the one-tailed probability of the chi-squared distribution. |
---|
1012 | * |
---|
1013 | * @param float $value Value for the function |
---|
1014 | * @param float $degrees degrees of freedom |
---|
1015 | * @return float |
---|
1016 | */ |
---|
1017 | public static function CHIDIST($value, $degrees) { |
---|
1018 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
1019 | $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees)); |
---|
1020 | |
---|
1021 | if ((is_numeric($value)) && (is_numeric($degrees))) { |
---|
1022 | if ($degrees < 1) { |
---|
1023 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1024 | } |
---|
1025 | if ($value < 0) { |
---|
1026 | if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) { |
---|
1027 | return 1; |
---|
1028 | } |
---|
1029 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1030 | } |
---|
1031 | return 1 - (self::_incompleteGamma($degrees/2,$value/2) / self::_gamma($degrees/2)); |
---|
1032 | } |
---|
1033 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1034 | } // function CHIDIST() |
---|
1035 | |
---|
1036 | |
---|
1037 | /** |
---|
1038 | * CHIINV |
---|
1039 | * |
---|
1040 | * Returns the one-tailed probability of the chi-squared distribution. |
---|
1041 | * |
---|
1042 | * @param float $probability Probability for the function |
---|
1043 | * @param float $degrees degrees of freedom |
---|
1044 | * @return float |
---|
1045 | */ |
---|
1046 | public static function CHIINV($probability, $degrees) { |
---|
1047 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
1048 | $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees)); |
---|
1049 | |
---|
1050 | if ((is_numeric($probability)) && (is_numeric($degrees))) { |
---|
1051 | |
---|
1052 | $xLo = 100; |
---|
1053 | $xHi = 0; |
---|
1054 | |
---|
1055 | $x = $xNew = 1; |
---|
1056 | $dx = 1; |
---|
1057 | $i = 0; |
---|
1058 | |
---|
1059 | while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) { |
---|
1060 | // Apply Newton-Raphson step |
---|
1061 | $result = self::CHIDIST($x, $degrees); |
---|
1062 | $error = $result - $probability; |
---|
1063 | if ($error == 0.0) { |
---|
1064 | $dx = 0; |
---|
1065 | } elseif ($error < 0.0) { |
---|
1066 | $xLo = $x; |
---|
1067 | } else { |
---|
1068 | $xHi = $x; |
---|
1069 | } |
---|
1070 | // Avoid division by zero |
---|
1071 | if ($result != 0.0) { |
---|
1072 | $dx = $error / $result; |
---|
1073 | $xNew = $x - $dx; |
---|
1074 | } |
---|
1075 | // If the NR fails to converge (which for example may be the |
---|
1076 | // case if the initial guess is too rough) we apply a bisection |
---|
1077 | // step to determine a more narrow interval around the root. |
---|
1078 | if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) { |
---|
1079 | $xNew = ($xLo + $xHi) / 2; |
---|
1080 | $dx = $xNew - $x; |
---|
1081 | } |
---|
1082 | $x = $xNew; |
---|
1083 | } |
---|
1084 | if ($i == MAX_ITERATIONS) { |
---|
1085 | return PHPExcel_Calculation_Functions::NA(); |
---|
1086 | } |
---|
1087 | return round($x,12); |
---|
1088 | } |
---|
1089 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1090 | } // function CHIINV() |
---|
1091 | |
---|
1092 | |
---|
1093 | /** |
---|
1094 | * CONFIDENCE |
---|
1095 | * |
---|
1096 | * Returns the confidence interval for a population mean |
---|
1097 | * |
---|
1098 | * @param float $alpha |
---|
1099 | * @param float $stdDev Standard Deviation |
---|
1100 | * @param float $size |
---|
1101 | * @return float |
---|
1102 | * |
---|
1103 | */ |
---|
1104 | public static function CONFIDENCE($alpha,$stdDev,$size) { |
---|
1105 | $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
---|
1106 | $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
---|
1107 | $size = floor(PHPExcel_Calculation_Functions::flattenSingleValue($size)); |
---|
1108 | |
---|
1109 | if ((is_numeric($alpha)) && (is_numeric($stdDev)) && (is_numeric($size))) { |
---|
1110 | if (($alpha <= 0) || ($alpha >= 1)) { |
---|
1111 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1112 | } |
---|
1113 | if (($stdDev <= 0) || ($size < 1)) { |
---|
1114 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1115 | } |
---|
1116 | return self::NORMSINV(1 - $alpha / 2) * $stdDev / sqrt($size); |
---|
1117 | } |
---|
1118 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1119 | } // function CONFIDENCE() |
---|
1120 | |
---|
1121 | |
---|
1122 | /** |
---|
1123 | * CORREL |
---|
1124 | * |
---|
1125 | * Returns covariance, the average of the products of deviations for each data point pair. |
---|
1126 | * |
---|
1127 | * @param array of mixed Data Series Y |
---|
1128 | * @param array of mixed Data Series X |
---|
1129 | * @return float |
---|
1130 | */ |
---|
1131 | public static function CORREL($yValues,$xValues=null) { |
---|
1132 | if ((is_null($xValues)) || (!is_array($yValues)) || (!is_array($xValues))) { |
---|
1133 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1134 | } |
---|
1135 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
1136 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1137 | } |
---|
1138 | $yValueCount = count($yValues); |
---|
1139 | $xValueCount = count($xValues); |
---|
1140 | |
---|
1141 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
1142 | return PHPExcel_Calculation_Functions::NA(); |
---|
1143 | } elseif ($yValueCount == 1) { |
---|
1144 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
1145 | } |
---|
1146 | |
---|
1147 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
---|
1148 | return $bestFitLinear->getCorrelation(); |
---|
1149 | } // function CORREL() |
---|
1150 | |
---|
1151 | |
---|
1152 | /** |
---|
1153 | * COUNT |
---|
1154 | * |
---|
1155 | * Counts the number of cells that contain numbers within the list of arguments |
---|
1156 | * |
---|
1157 | * Excel Function: |
---|
1158 | * COUNT(value1[,value2[, ...]]) |
---|
1159 | * |
---|
1160 | * @access public |
---|
1161 | * @category Statistical Functions |
---|
1162 | * @param mixed $arg,... Data values |
---|
1163 | * @return int |
---|
1164 | */ |
---|
1165 | public static function COUNT() { |
---|
1166 | // Return value |
---|
1167 | $returnValue = 0; |
---|
1168 | |
---|
1169 | // Loop through arguments |
---|
1170 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
1171 | foreach ($aArgs as $k => $arg) { |
---|
1172 | if ((is_bool($arg)) && |
---|
1173 | ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
---|
1174 | $arg = (integer) $arg; |
---|
1175 | } |
---|
1176 | // Is it a numeric value? |
---|
1177 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
1178 | ++$returnValue; |
---|
1179 | } |
---|
1180 | } |
---|
1181 | |
---|
1182 | // Return |
---|
1183 | return $returnValue; |
---|
1184 | } // function COUNT() |
---|
1185 | |
---|
1186 | |
---|
1187 | /** |
---|
1188 | * COUNTA |
---|
1189 | * |
---|
1190 | * Counts the number of cells that are not empty within the list of arguments |
---|
1191 | * |
---|
1192 | * Excel Function: |
---|
1193 | * COUNTA(value1[,value2[, ...]]) |
---|
1194 | * |
---|
1195 | * @access public |
---|
1196 | * @category Statistical Functions |
---|
1197 | * @param mixed $arg,... Data values |
---|
1198 | * @return int |
---|
1199 | */ |
---|
1200 | public static function COUNTA() { |
---|
1201 | // Return value |
---|
1202 | $returnValue = 0; |
---|
1203 | |
---|
1204 | // Loop through arguments |
---|
1205 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
1206 | foreach ($aArgs as $arg) { |
---|
1207 | // Is it a numeric, boolean or string value? |
---|
1208 | if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { |
---|
1209 | ++$returnValue; |
---|
1210 | } |
---|
1211 | } |
---|
1212 | |
---|
1213 | // Return |
---|
1214 | return $returnValue; |
---|
1215 | } // function COUNTA() |
---|
1216 | |
---|
1217 | |
---|
1218 | /** |
---|
1219 | * COUNTBLANK |
---|
1220 | * |
---|
1221 | * Counts the number of empty cells within the list of arguments |
---|
1222 | * |
---|
1223 | * Excel Function: |
---|
1224 | * COUNTBLANK(value1[,value2[, ...]]) |
---|
1225 | * |
---|
1226 | * @access public |
---|
1227 | * @category Statistical Functions |
---|
1228 | * @param mixed $arg,... Data values |
---|
1229 | * @return int |
---|
1230 | */ |
---|
1231 | public static function COUNTBLANK() { |
---|
1232 | // Return value |
---|
1233 | $returnValue = 0; |
---|
1234 | |
---|
1235 | // Loop through arguments |
---|
1236 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
1237 | foreach ($aArgs as $arg) { |
---|
1238 | // Is it a blank cell? |
---|
1239 | if ((is_null($arg)) || ((is_string($arg)) && ($arg == ''))) { |
---|
1240 | ++$returnValue; |
---|
1241 | } |
---|
1242 | } |
---|
1243 | |
---|
1244 | // Return |
---|
1245 | return $returnValue; |
---|
1246 | } // function COUNTBLANK() |
---|
1247 | |
---|
1248 | |
---|
1249 | /** |
---|
1250 | * COUNTIF |
---|
1251 | * |
---|
1252 | * Counts the number of cells that contain numbers within the list of arguments |
---|
1253 | * |
---|
1254 | * Excel Function: |
---|
1255 | * COUNTIF(value1[,value2[, ...]],condition) |
---|
1256 | * |
---|
1257 | * @access public |
---|
1258 | * @category Statistical Functions |
---|
1259 | * @param mixed $arg,... Data values |
---|
1260 | * @param string $condition The criteria that defines which cells will be counted. |
---|
1261 | * @return int |
---|
1262 | */ |
---|
1263 | public static function COUNTIF($aArgs,$condition) { |
---|
1264 | // Return value |
---|
1265 | $returnValue = 0; |
---|
1266 | |
---|
1267 | $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs); |
---|
1268 | $condition = PHPExcel_Calculation_Functions::_ifCondition($condition); |
---|
1269 | // Loop through arguments |
---|
1270 | foreach ($aArgs as $arg) { |
---|
1271 | if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); } |
---|
1272 | $testCondition = '='.$arg.$condition; |
---|
1273 | if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) { |
---|
1274 | // Is it a value within our criteria |
---|
1275 | ++$returnValue; |
---|
1276 | } |
---|
1277 | } |
---|
1278 | |
---|
1279 | // Return |
---|
1280 | return $returnValue; |
---|
1281 | } // function COUNTIF() |
---|
1282 | |
---|
1283 | |
---|
1284 | /** |
---|
1285 | * COVAR |
---|
1286 | * |
---|
1287 | * Returns covariance, the average of the products of deviations for each data point pair. |
---|
1288 | * |
---|
1289 | * @param array of mixed Data Series Y |
---|
1290 | * @param array of mixed Data Series X |
---|
1291 | * @return float |
---|
1292 | */ |
---|
1293 | public static function COVAR($yValues,$xValues) { |
---|
1294 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
1295 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1296 | } |
---|
1297 | $yValueCount = count($yValues); |
---|
1298 | $xValueCount = count($xValues); |
---|
1299 | |
---|
1300 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
1301 | return PHPExcel_Calculation_Functions::NA(); |
---|
1302 | } elseif ($yValueCount == 1) { |
---|
1303 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
1304 | } |
---|
1305 | |
---|
1306 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
---|
1307 | return $bestFitLinear->getCovariance(); |
---|
1308 | } // function COVAR() |
---|
1309 | |
---|
1310 | |
---|
1311 | /** |
---|
1312 | * CRITBINOM |
---|
1313 | * |
---|
1314 | * Returns the smallest value for which the cumulative binomial distribution is greater |
---|
1315 | * than or equal to a criterion value |
---|
1316 | * |
---|
1317 | * See http://support.microsoft.com/kb/828117/ for details of the algorithm used |
---|
1318 | * |
---|
1319 | * @param float $trials number of Bernoulli trials |
---|
1320 | * @param float $probability probability of a success on each trial |
---|
1321 | * @param float $alpha criterion value |
---|
1322 | * @return int |
---|
1323 | * |
---|
1324 | * @todo Warning. This implementation differs from the algorithm detailed on the MS |
---|
1325 | * web site in that $CumPGuessMinus1 = $CumPGuess - 1 rather than $CumPGuess - $PGuess |
---|
1326 | * This eliminates a potential endless loop error, but may have an adverse affect on the |
---|
1327 | * accuracy of the function (although all my tests have so far returned correct results). |
---|
1328 | * |
---|
1329 | */ |
---|
1330 | public static function CRITBINOM($trials, $probability, $alpha) { |
---|
1331 | $trials = floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials)); |
---|
1332 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
1333 | $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
---|
1334 | |
---|
1335 | if ((is_numeric($trials)) && (is_numeric($probability)) && (is_numeric($alpha))) { |
---|
1336 | if ($trials < 0) { |
---|
1337 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1338 | } |
---|
1339 | if (($probability < 0) || ($probability > 1)) { |
---|
1340 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1341 | } |
---|
1342 | if (($alpha < 0) || ($alpha > 1)) { |
---|
1343 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1344 | } |
---|
1345 | if ($alpha <= 0.5) { |
---|
1346 | $t = sqrt(log(1 / ($alpha * $alpha))); |
---|
1347 | $trialsApprox = 0 - ($t + (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t)); |
---|
1348 | } else { |
---|
1349 | $t = sqrt(log(1 / pow(1 - $alpha,2))); |
---|
1350 | $trialsApprox = $t - (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t); |
---|
1351 | } |
---|
1352 | $Guess = floor($trials * $probability + $trialsApprox * sqrt($trials * $probability * (1 - $probability))); |
---|
1353 | if ($Guess < 0) { |
---|
1354 | $Guess = 0; |
---|
1355 | } elseif ($Guess > $trials) { |
---|
1356 | $Guess = $trials; |
---|
1357 | } |
---|
1358 | |
---|
1359 | $TotalUnscaledProbability = $UnscaledPGuess = $UnscaledCumPGuess = 0.0; |
---|
1360 | $EssentiallyZero = 10e-12; |
---|
1361 | |
---|
1362 | $m = floor($trials * $probability); |
---|
1363 | ++$TotalUnscaledProbability; |
---|
1364 | if ($m == $Guess) { ++$UnscaledPGuess; } |
---|
1365 | if ($m <= $Guess) { ++$UnscaledCumPGuess; } |
---|
1366 | |
---|
1367 | $PreviousValue = 1; |
---|
1368 | $Done = False; |
---|
1369 | $k = $m + 1; |
---|
1370 | while ((!$Done) && ($k <= $trials)) { |
---|
1371 | $CurrentValue = $PreviousValue * ($trials - $k + 1) * $probability / ($k * (1 - $probability)); |
---|
1372 | $TotalUnscaledProbability += $CurrentValue; |
---|
1373 | if ($k == $Guess) { $UnscaledPGuess += $CurrentValue; } |
---|
1374 | if ($k <= $Guess) { $UnscaledCumPGuess += $CurrentValue; } |
---|
1375 | if ($CurrentValue <= $EssentiallyZero) { $Done = True; } |
---|
1376 | $PreviousValue = $CurrentValue; |
---|
1377 | ++$k; |
---|
1378 | } |
---|
1379 | |
---|
1380 | $PreviousValue = 1; |
---|
1381 | $Done = False; |
---|
1382 | $k = $m - 1; |
---|
1383 | while ((!$Done) && ($k >= 0)) { |
---|
1384 | $CurrentValue = $PreviousValue * $k + 1 * (1 - $probability) / (($trials - $k) * $probability); |
---|
1385 | $TotalUnscaledProbability += $CurrentValue; |
---|
1386 | if ($k == $Guess) { $UnscaledPGuess += $CurrentValue; } |
---|
1387 | if ($k <= $Guess) { $UnscaledCumPGuess += $CurrentValue; } |
---|
1388 | if ($CurrentValue <= $EssentiallyZero) { $Done = True; } |
---|
1389 | $PreviousValue = $CurrentValue; |
---|
1390 | --$k; |
---|
1391 | } |
---|
1392 | |
---|
1393 | $PGuess = $UnscaledPGuess / $TotalUnscaledProbability; |
---|
1394 | $CumPGuess = $UnscaledCumPGuess / $TotalUnscaledProbability; |
---|
1395 | |
---|
1396 | // $CumPGuessMinus1 = $CumPGuess - $PGuess; |
---|
1397 | $CumPGuessMinus1 = $CumPGuess - 1; |
---|
1398 | |
---|
1399 | while (True) { |
---|
1400 | if (($CumPGuessMinus1 < $alpha) && ($CumPGuess >= $alpha)) { |
---|
1401 | return $Guess; |
---|
1402 | } elseif (($CumPGuessMinus1 < $alpha) && ($CumPGuess < $alpha)) { |
---|
1403 | $PGuessPlus1 = $PGuess * ($trials - $Guess) * $probability / $Guess / (1 - $probability); |
---|
1404 | $CumPGuessMinus1 = $CumPGuess; |
---|
1405 | $CumPGuess = $CumPGuess + $PGuessPlus1; |
---|
1406 | $PGuess = $PGuessPlus1; |
---|
1407 | ++$Guess; |
---|
1408 | } elseif (($CumPGuessMinus1 >= $alpha) && ($CumPGuess >= $alpha)) { |
---|
1409 | $PGuessMinus1 = $PGuess * $Guess * (1 - $probability) / ($trials - $Guess + 1) / $probability; |
---|
1410 | $CumPGuess = $CumPGuessMinus1; |
---|
1411 | $CumPGuessMinus1 = $CumPGuessMinus1 - $PGuess; |
---|
1412 | $PGuess = $PGuessMinus1; |
---|
1413 | --$Guess; |
---|
1414 | } |
---|
1415 | } |
---|
1416 | } |
---|
1417 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1418 | } // function CRITBINOM() |
---|
1419 | |
---|
1420 | |
---|
1421 | /** |
---|
1422 | * DEVSQ |
---|
1423 | * |
---|
1424 | * Returns the sum of squares of deviations of data points from their sample mean. |
---|
1425 | * |
---|
1426 | * Excel Function: |
---|
1427 | * DEVSQ(value1[,value2[, ...]]) |
---|
1428 | * |
---|
1429 | * @access public |
---|
1430 | * @category Statistical Functions |
---|
1431 | * @param mixed $arg,... Data values |
---|
1432 | * @return float |
---|
1433 | */ |
---|
1434 | public static function DEVSQ() { |
---|
1435 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
1436 | |
---|
1437 | // Return value |
---|
1438 | $returnValue = null; |
---|
1439 | |
---|
1440 | $aMean = self::AVERAGE($aArgs); |
---|
1441 | if ($aMean != PHPExcel_Calculation_Functions::DIV0()) { |
---|
1442 | $aCount = -1; |
---|
1443 | foreach ($aArgs as $k => $arg) { |
---|
1444 | // Is it a numeric value? |
---|
1445 | if ((is_bool($arg)) && |
---|
1446 | ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
---|
1447 | $arg = (integer) $arg; |
---|
1448 | } |
---|
1449 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
1450 | if (is_null($returnValue)) { |
---|
1451 | $returnValue = pow(($arg - $aMean),2); |
---|
1452 | } else { |
---|
1453 | $returnValue += pow(($arg - $aMean),2); |
---|
1454 | } |
---|
1455 | ++$aCount; |
---|
1456 | } |
---|
1457 | } |
---|
1458 | |
---|
1459 | // Return |
---|
1460 | if (is_null($returnValue)) { |
---|
1461 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1462 | } else { |
---|
1463 | return $returnValue; |
---|
1464 | } |
---|
1465 | } |
---|
1466 | return self::NA(); |
---|
1467 | } // function DEVSQ() |
---|
1468 | |
---|
1469 | |
---|
1470 | /** |
---|
1471 | * EXPONDIST |
---|
1472 | * |
---|
1473 | * Returns the exponential distribution. Use EXPONDIST to model the time between events, |
---|
1474 | * such as how long an automated bank teller takes to deliver cash. For example, you can |
---|
1475 | * use EXPONDIST to determine the probability that the process takes at most 1 minute. |
---|
1476 | * |
---|
1477 | * @param float $value Value of the function |
---|
1478 | * @param float $lambda The parameter value |
---|
1479 | * @param boolean $cumulative |
---|
1480 | * @return float |
---|
1481 | */ |
---|
1482 | public static function EXPONDIST($value, $lambda, $cumulative) { |
---|
1483 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
1484 | $lambda = PHPExcel_Calculation_Functions::flattenSingleValue($lambda); |
---|
1485 | $cumulative = PHPExcel_Calculation_Functions::flattenSingleValue($cumulative); |
---|
1486 | |
---|
1487 | if ((is_numeric($value)) && (is_numeric($lambda))) { |
---|
1488 | if (($value < 0) || ($lambda < 0)) { |
---|
1489 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1490 | } |
---|
1491 | if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
---|
1492 | if ($cumulative) { |
---|
1493 | return 1 - exp(0-$value*$lambda); |
---|
1494 | } else { |
---|
1495 | return $lambda * exp(0-$value*$lambda); |
---|
1496 | } |
---|
1497 | } |
---|
1498 | } |
---|
1499 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1500 | } // function EXPONDIST() |
---|
1501 | |
---|
1502 | |
---|
1503 | /** |
---|
1504 | * FISHER |
---|
1505 | * |
---|
1506 | * Returns the Fisher transformation at x. This transformation produces a function that |
---|
1507 | * is normally distributed rather than skewed. Use this function to perform hypothesis |
---|
1508 | * testing on the correlation coefficient. |
---|
1509 | * |
---|
1510 | * @param float $value |
---|
1511 | * @return float |
---|
1512 | */ |
---|
1513 | public static function FISHER($value) { |
---|
1514 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
1515 | |
---|
1516 | if (is_numeric($value)) { |
---|
1517 | if (($value <= -1) || ($value >= 1)) { |
---|
1518 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1519 | } |
---|
1520 | return 0.5 * log((1+$value)/(1-$value)); |
---|
1521 | } |
---|
1522 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1523 | } // function FISHER() |
---|
1524 | |
---|
1525 | |
---|
1526 | /** |
---|
1527 | * FISHERINV |
---|
1528 | * |
---|
1529 | * Returns the inverse of the Fisher transformation. Use this transformation when |
---|
1530 | * analyzing correlations between ranges or arrays of data. If y = FISHER(x), then |
---|
1531 | * FISHERINV(y) = x. |
---|
1532 | * |
---|
1533 | * @param float $value |
---|
1534 | * @return float |
---|
1535 | */ |
---|
1536 | public static function FISHERINV($value) { |
---|
1537 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
1538 | |
---|
1539 | if (is_numeric($value)) { |
---|
1540 | return (exp(2 * $value) - 1) / (exp(2 * $value) + 1); |
---|
1541 | } |
---|
1542 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1543 | } // function FISHERINV() |
---|
1544 | |
---|
1545 | |
---|
1546 | /** |
---|
1547 | * FORECAST |
---|
1548 | * |
---|
1549 | * Calculates, or predicts, a future value by using existing values. The predicted value is a y-value for a given x-value. |
---|
1550 | * |
---|
1551 | * @param float Value of X for which we want to find Y |
---|
1552 | * @param array of mixed Data Series Y |
---|
1553 | * @param array of mixed Data Series X |
---|
1554 | * @return float |
---|
1555 | */ |
---|
1556 | public static function FORECAST($xValue,$yValues,$xValues) { |
---|
1557 | $xValue = PHPExcel_Calculation_Functions::flattenSingleValue($xValue); |
---|
1558 | if (!is_numeric($xValue)) { |
---|
1559 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1560 | } |
---|
1561 | |
---|
1562 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
1563 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1564 | } |
---|
1565 | $yValueCount = count($yValues); |
---|
1566 | $xValueCount = count($xValues); |
---|
1567 | |
---|
1568 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
1569 | return PHPExcel_Calculation_Functions::NA(); |
---|
1570 | } elseif ($yValueCount == 1) { |
---|
1571 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
1572 | } |
---|
1573 | |
---|
1574 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
---|
1575 | return $bestFitLinear->getValueOfYForX($xValue); |
---|
1576 | } // function FORECAST() |
---|
1577 | |
---|
1578 | |
---|
1579 | /** |
---|
1580 | * GAMMADIST |
---|
1581 | * |
---|
1582 | * Returns the gamma distribution. |
---|
1583 | * |
---|
1584 | * @param float $value Value at which you want to evaluate the distribution |
---|
1585 | * @param float $a Parameter to the distribution |
---|
1586 | * @param float $b Parameter to the distribution |
---|
1587 | * @param boolean $cumulative |
---|
1588 | * @return float |
---|
1589 | * |
---|
1590 | */ |
---|
1591 | public static function GAMMADIST($value,$a,$b,$cumulative) { |
---|
1592 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
1593 | $a = PHPExcel_Calculation_Functions::flattenSingleValue($a); |
---|
1594 | $b = PHPExcel_Calculation_Functions::flattenSingleValue($b); |
---|
1595 | |
---|
1596 | if ((is_numeric($value)) && (is_numeric($a)) && (is_numeric($b))) { |
---|
1597 | if (($value < 0) || ($a <= 0) || ($b <= 0)) { |
---|
1598 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1599 | } |
---|
1600 | if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
---|
1601 | if ($cumulative) { |
---|
1602 | return self::_incompleteGamma($a,$value / $b) / self::_gamma($a); |
---|
1603 | } else { |
---|
1604 | return (1 / (pow($b,$a) * self::_gamma($a))) * pow($value,$a-1) * exp(0-($value / $b)); |
---|
1605 | } |
---|
1606 | } |
---|
1607 | } |
---|
1608 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1609 | } // function GAMMADIST() |
---|
1610 | |
---|
1611 | |
---|
1612 | /** |
---|
1613 | * GAMMAINV |
---|
1614 | * |
---|
1615 | * Returns the inverse of the beta distribution. |
---|
1616 | * |
---|
1617 | * @param float $probability Probability at which you want to evaluate the distribution |
---|
1618 | * @param float $alpha Parameter to the distribution |
---|
1619 | * @param float $beta Parameter to the distribution |
---|
1620 | * @return float |
---|
1621 | * |
---|
1622 | */ |
---|
1623 | public static function GAMMAINV($probability,$alpha,$beta) { |
---|
1624 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
1625 | $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
---|
1626 | $beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta); |
---|
1627 | |
---|
1628 | if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta))) { |
---|
1629 | if (($alpha <= 0) || ($beta <= 0) || ($probability < 0) || ($probability > 1)) { |
---|
1630 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1631 | } |
---|
1632 | |
---|
1633 | $xLo = 0; |
---|
1634 | $xHi = $alpha * $beta * 5; |
---|
1635 | |
---|
1636 | $x = $xNew = 1; |
---|
1637 | $error = $pdf = 0; |
---|
1638 | $dx = 1024; |
---|
1639 | $i = 0; |
---|
1640 | |
---|
1641 | while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) { |
---|
1642 | // Apply Newton-Raphson step |
---|
1643 | $error = self::GAMMADIST($x, $alpha, $beta, True) - $probability; |
---|
1644 | if ($error < 0.0) { |
---|
1645 | $xLo = $x; |
---|
1646 | } else { |
---|
1647 | $xHi = $x; |
---|
1648 | } |
---|
1649 | $pdf = self::GAMMADIST($x, $alpha, $beta, False); |
---|
1650 | // Avoid division by zero |
---|
1651 | if ($pdf != 0.0) { |
---|
1652 | $dx = $error / $pdf; |
---|
1653 | $xNew = $x - $dx; |
---|
1654 | } |
---|
1655 | // If the NR fails to converge (which for example may be the |
---|
1656 | // case if the initial guess is too rough) we apply a bisection |
---|
1657 | // step to determine a more narrow interval around the root. |
---|
1658 | if (($xNew < $xLo) || ($xNew > $xHi) || ($pdf == 0.0)) { |
---|
1659 | $xNew = ($xLo + $xHi) / 2; |
---|
1660 | $dx = $xNew - $x; |
---|
1661 | } |
---|
1662 | $x = $xNew; |
---|
1663 | } |
---|
1664 | if ($i == MAX_ITERATIONS) { |
---|
1665 | return PHPExcel_Calculation_Functions::NA(); |
---|
1666 | } |
---|
1667 | return $x; |
---|
1668 | } |
---|
1669 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1670 | } // function GAMMAINV() |
---|
1671 | |
---|
1672 | |
---|
1673 | /** |
---|
1674 | * GAMMALN |
---|
1675 | * |
---|
1676 | * Returns the natural logarithm of the gamma function. |
---|
1677 | * |
---|
1678 | * @param float $value |
---|
1679 | * @return float |
---|
1680 | */ |
---|
1681 | public static function GAMMALN($value) { |
---|
1682 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
1683 | |
---|
1684 | if (is_numeric($value)) { |
---|
1685 | if ($value <= 0) { |
---|
1686 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1687 | } |
---|
1688 | return log(self::_gamma($value)); |
---|
1689 | } |
---|
1690 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1691 | } // function GAMMALN() |
---|
1692 | |
---|
1693 | |
---|
1694 | /** |
---|
1695 | * GEOMEAN |
---|
1696 | * |
---|
1697 | * Returns the geometric mean of an array or range of positive data. For example, you |
---|
1698 | * can use GEOMEAN to calculate average growth rate given compound interest with |
---|
1699 | * variable rates. |
---|
1700 | * |
---|
1701 | * Excel Function: |
---|
1702 | * GEOMEAN(value1[,value2[, ...]]) |
---|
1703 | * |
---|
1704 | * @access public |
---|
1705 | * @category Statistical Functions |
---|
1706 | * @param mixed $arg,... Data values |
---|
1707 | * @return float |
---|
1708 | */ |
---|
1709 | public static function GEOMEAN() { |
---|
1710 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
1711 | |
---|
1712 | $aMean = PHPExcel_Calculation_MathTrig::PRODUCT($aArgs); |
---|
1713 | if (is_numeric($aMean) && ($aMean > 0)) { |
---|
1714 | $aCount = self::COUNT($aArgs) ; |
---|
1715 | if (self::MIN($aArgs) > 0) { |
---|
1716 | return pow($aMean, (1 / $aCount)); |
---|
1717 | } |
---|
1718 | } |
---|
1719 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1720 | } // GEOMEAN() |
---|
1721 | |
---|
1722 | |
---|
1723 | /** |
---|
1724 | * GROWTH |
---|
1725 | * |
---|
1726 | * Returns values along a predicted emponential trend |
---|
1727 | * |
---|
1728 | * @param array of mixed Data Series Y |
---|
1729 | * @param array of mixed Data Series X |
---|
1730 | * @param array of mixed Values of X for which we want to find Y |
---|
1731 | * @param boolean A logical value specifying whether to force the intersect to equal 0. |
---|
1732 | * @return array of float |
---|
1733 | */ |
---|
1734 | public static function GROWTH($yValues,$xValues=array(),$newValues=array(),$const=True) { |
---|
1735 | $yValues = PHPExcel_Calculation_Functions::flattenArray($yValues); |
---|
1736 | $xValues = PHPExcel_Calculation_Functions::flattenArray($xValues); |
---|
1737 | $newValues = PHPExcel_Calculation_Functions::flattenArray($newValues); |
---|
1738 | $const = (is_null($const)) ? True : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const); |
---|
1739 | |
---|
1740 | $bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL,$yValues,$xValues,$const); |
---|
1741 | if (empty($newValues)) { |
---|
1742 | $newValues = $bestFitExponential->getXValues(); |
---|
1743 | } |
---|
1744 | |
---|
1745 | $returnArray = array(); |
---|
1746 | foreach($newValues as $xValue) { |
---|
1747 | $returnArray[0][] = $bestFitExponential->getValueOfYForX($xValue); |
---|
1748 | } |
---|
1749 | |
---|
1750 | return $returnArray; |
---|
1751 | } // function GROWTH() |
---|
1752 | |
---|
1753 | |
---|
1754 | /** |
---|
1755 | * HARMEAN |
---|
1756 | * |
---|
1757 | * Returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the |
---|
1758 | * arithmetic mean of reciprocals. |
---|
1759 | * |
---|
1760 | * Excel Function: |
---|
1761 | * HARMEAN(value1[,value2[, ...]]) |
---|
1762 | * |
---|
1763 | * @access public |
---|
1764 | * @category Statistical Functions |
---|
1765 | * @param mixed $arg,... Data values |
---|
1766 | * @return float |
---|
1767 | */ |
---|
1768 | public static function HARMEAN() { |
---|
1769 | // Return value |
---|
1770 | $returnValue = PHPExcel_Calculation_Functions::NA(); |
---|
1771 | |
---|
1772 | // Loop through arguments |
---|
1773 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
1774 | if (self::MIN($aArgs) < 0) { |
---|
1775 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1776 | } |
---|
1777 | $aCount = 0; |
---|
1778 | foreach ($aArgs as $arg) { |
---|
1779 | // Is it a numeric value? |
---|
1780 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
1781 | if ($arg <= 0) { |
---|
1782 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1783 | } |
---|
1784 | if (is_null($returnValue)) { |
---|
1785 | $returnValue = (1 / $arg); |
---|
1786 | } else { |
---|
1787 | $returnValue += (1 / $arg); |
---|
1788 | } |
---|
1789 | ++$aCount; |
---|
1790 | } |
---|
1791 | } |
---|
1792 | |
---|
1793 | // Return |
---|
1794 | if ($aCount > 0) { |
---|
1795 | return 1 / ($returnValue / $aCount); |
---|
1796 | } else { |
---|
1797 | return $returnValue; |
---|
1798 | } |
---|
1799 | } // function HARMEAN() |
---|
1800 | |
---|
1801 | |
---|
1802 | /** |
---|
1803 | * HYPGEOMDIST |
---|
1804 | * |
---|
1805 | * Returns the hypergeometric distribution. HYPGEOMDIST returns the probability of a given number of |
---|
1806 | * sample successes, given the sample size, population successes, and population size. |
---|
1807 | * |
---|
1808 | * @param float $sampleSuccesses Number of successes in the sample |
---|
1809 | * @param float $sampleNumber Size of the sample |
---|
1810 | * @param float $populationSuccesses Number of successes in the population |
---|
1811 | * @param float $populationNumber Population size |
---|
1812 | * @return float |
---|
1813 | * |
---|
1814 | */ |
---|
1815 | public static function HYPGEOMDIST($sampleSuccesses, $sampleNumber, $populationSuccesses, $populationNumber) { |
---|
1816 | $sampleSuccesses = floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleSuccesses)); |
---|
1817 | $sampleNumber = floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleNumber)); |
---|
1818 | $populationSuccesses = floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationSuccesses)); |
---|
1819 | $populationNumber = floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationNumber)); |
---|
1820 | |
---|
1821 | if ((is_numeric($sampleSuccesses)) && (is_numeric($sampleNumber)) && (is_numeric($populationSuccesses)) && (is_numeric($populationNumber))) { |
---|
1822 | if (($sampleSuccesses < 0) || ($sampleSuccesses > $sampleNumber) || ($sampleSuccesses > $populationSuccesses)) { |
---|
1823 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1824 | } |
---|
1825 | if (($sampleNumber <= 0) || ($sampleNumber > $populationNumber)) { |
---|
1826 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1827 | } |
---|
1828 | if (($populationSuccesses <= 0) || ($populationSuccesses > $populationNumber)) { |
---|
1829 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1830 | } |
---|
1831 | return PHPExcel_Calculation_MathTrig::COMBIN($populationSuccesses,$sampleSuccesses) * |
---|
1832 | PHPExcel_Calculation_MathTrig::COMBIN($populationNumber - $populationSuccesses,$sampleNumber - $sampleSuccesses) / |
---|
1833 | PHPExcel_Calculation_MathTrig::COMBIN($populationNumber,$sampleNumber); |
---|
1834 | } |
---|
1835 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1836 | } // function HYPGEOMDIST() |
---|
1837 | |
---|
1838 | |
---|
1839 | /** |
---|
1840 | * INTERCEPT |
---|
1841 | * |
---|
1842 | * Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values. |
---|
1843 | * |
---|
1844 | * @param array of mixed Data Series Y |
---|
1845 | * @param array of mixed Data Series X |
---|
1846 | * @return float |
---|
1847 | */ |
---|
1848 | public static function INTERCEPT($yValues,$xValues) { |
---|
1849 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
1850 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1851 | } |
---|
1852 | $yValueCount = count($yValues); |
---|
1853 | $xValueCount = count($xValues); |
---|
1854 | |
---|
1855 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
1856 | return PHPExcel_Calculation_Functions::NA(); |
---|
1857 | } elseif ($yValueCount == 1) { |
---|
1858 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
1859 | } |
---|
1860 | |
---|
1861 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
---|
1862 | return $bestFitLinear->getIntersect(); |
---|
1863 | } // function INTERCEPT() |
---|
1864 | |
---|
1865 | |
---|
1866 | /** |
---|
1867 | * KURT |
---|
1868 | * |
---|
1869 | * Returns the kurtosis of a data set. Kurtosis characterizes the relative peakedness |
---|
1870 | * or flatness of a distribution compared with the normal distribution. Positive |
---|
1871 | * kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a |
---|
1872 | * relatively flat distribution. |
---|
1873 | * |
---|
1874 | * @param array Data Series |
---|
1875 | * @return float |
---|
1876 | */ |
---|
1877 | public static function KURT() { |
---|
1878 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
1879 | $mean = self::AVERAGE($aArgs); |
---|
1880 | $stdDev = self::STDEV($aArgs); |
---|
1881 | |
---|
1882 | if ($stdDev > 0) { |
---|
1883 | $count = $summer = 0; |
---|
1884 | // Loop through arguments |
---|
1885 | foreach ($aArgs as $k => $arg) { |
---|
1886 | if ((is_bool($arg)) && |
---|
1887 | (!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
---|
1888 | } else { |
---|
1889 | // Is it a numeric value? |
---|
1890 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
1891 | $summer += pow((($arg - $mean) / $stdDev),4) ; |
---|
1892 | ++$count; |
---|
1893 | } |
---|
1894 | } |
---|
1895 | } |
---|
1896 | |
---|
1897 | // Return |
---|
1898 | if ($count > 3) { |
---|
1899 | return $summer * ($count * ($count+1) / (($count-1) * ($count-2) * ($count-3))) - (3 * pow($count-1,2) / (($count-2) * ($count-3))); |
---|
1900 | } |
---|
1901 | } |
---|
1902 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
1903 | } // function KURT() |
---|
1904 | |
---|
1905 | |
---|
1906 | /** |
---|
1907 | * LARGE |
---|
1908 | * |
---|
1909 | * Returns the nth largest value in a data set. You can use this function to |
---|
1910 | * select a value based on its relative standing. |
---|
1911 | * |
---|
1912 | * Excel Function: |
---|
1913 | * LARGE(value1[,value2[, ...]],entry) |
---|
1914 | * |
---|
1915 | * @access public |
---|
1916 | * @category Statistical Functions |
---|
1917 | * @param mixed $arg,... Data values |
---|
1918 | * @param int $entry Position (ordered from the largest) in the array or range of data to return |
---|
1919 | * @return float |
---|
1920 | * |
---|
1921 | */ |
---|
1922 | public static function LARGE() { |
---|
1923 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
1924 | |
---|
1925 | // Calculate |
---|
1926 | $entry = floor(array_pop($aArgs)); |
---|
1927 | |
---|
1928 | if ((is_numeric($entry)) && (!is_string($entry))) { |
---|
1929 | $mArgs = array(); |
---|
1930 | foreach ($aArgs as $arg) { |
---|
1931 | // Is it a numeric value? |
---|
1932 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
1933 | $mArgs[] = $arg; |
---|
1934 | } |
---|
1935 | } |
---|
1936 | $count = self::COUNT($mArgs); |
---|
1937 | $entry = floor(--$entry); |
---|
1938 | if (($entry < 0) || ($entry >= $count) || ($count == 0)) { |
---|
1939 | return PHPExcel_Calculation_Functions::NaN(); |
---|
1940 | } |
---|
1941 | rsort($mArgs); |
---|
1942 | return $mArgs[$entry]; |
---|
1943 | } |
---|
1944 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1945 | } // function LARGE() |
---|
1946 | |
---|
1947 | |
---|
1948 | /** |
---|
1949 | * LINEST |
---|
1950 | * |
---|
1951 | * Calculates the statistics for a line by using the "least squares" method to calculate a straight line that best fits your data, |
---|
1952 | * and then returns an array that describes the line. |
---|
1953 | * |
---|
1954 | * @param array of mixed Data Series Y |
---|
1955 | * @param array of mixed Data Series X |
---|
1956 | * @param boolean A logical value specifying whether to force the intersect to equal 0. |
---|
1957 | * @param boolean A logical value specifying whether to return additional regression statistics. |
---|
1958 | * @return array |
---|
1959 | */ |
---|
1960 | public static function LINEST($yValues, $xValues = NULL, $const = TRUE, $stats = FALSE) { |
---|
1961 | $const = (is_null($const)) ? TRUE : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const); |
---|
1962 | $stats = (is_null($stats)) ? FALSE : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats); |
---|
1963 | if (is_null($xValues)) $xValues = range(1,count(PHPExcel_Calculation_Functions::flattenArray($yValues))); |
---|
1964 | |
---|
1965 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
1966 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
1967 | } |
---|
1968 | $yValueCount = count($yValues); |
---|
1969 | $xValueCount = count($xValues); |
---|
1970 | |
---|
1971 | |
---|
1972 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
1973 | return PHPExcel_Calculation_Functions::NA(); |
---|
1974 | } elseif ($yValueCount == 1) { |
---|
1975 | return 0; |
---|
1976 | } |
---|
1977 | |
---|
1978 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues,$const); |
---|
1979 | if ($stats) { |
---|
1980 | return array( array( $bestFitLinear->getSlope(), |
---|
1981 | $bestFitLinear->getSlopeSE(), |
---|
1982 | $bestFitLinear->getGoodnessOfFit(), |
---|
1983 | $bestFitLinear->getF(), |
---|
1984 | $bestFitLinear->getSSRegression(), |
---|
1985 | ), |
---|
1986 | array( $bestFitLinear->getIntersect(), |
---|
1987 | $bestFitLinear->getIntersectSE(), |
---|
1988 | $bestFitLinear->getStdevOfResiduals(), |
---|
1989 | $bestFitLinear->getDFResiduals(), |
---|
1990 | $bestFitLinear->getSSResiduals() |
---|
1991 | ) |
---|
1992 | ); |
---|
1993 | } else { |
---|
1994 | return array( $bestFitLinear->getSlope(), |
---|
1995 | $bestFitLinear->getIntersect() |
---|
1996 | ); |
---|
1997 | } |
---|
1998 | } // function LINEST() |
---|
1999 | |
---|
2000 | |
---|
2001 | /** |
---|
2002 | * LOGEST |
---|
2003 | * |
---|
2004 | * Calculates an exponential curve that best fits the X and Y data series, |
---|
2005 | * and then returns an array that describes the line. |
---|
2006 | * |
---|
2007 | * @param array of mixed Data Series Y |
---|
2008 | * @param array of mixed Data Series X |
---|
2009 | * @param boolean A logical value specifying whether to force the intersect to equal 0. |
---|
2010 | * @param boolean A logical value specifying whether to return additional regression statistics. |
---|
2011 | * @return array |
---|
2012 | */ |
---|
2013 | public static function LOGEST($yValues,$xValues=null,$const=True,$stats=False) { |
---|
2014 | $const = (is_null($const)) ? True : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const); |
---|
2015 | $stats = (is_null($stats)) ? False : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats); |
---|
2016 | if (is_null($xValues)) $xValues = range(1,count(PHPExcel_Calculation_Functions::flattenArray($yValues))); |
---|
2017 | |
---|
2018 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
2019 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
2020 | } |
---|
2021 | $yValueCount = count($yValues); |
---|
2022 | $xValueCount = count($xValues); |
---|
2023 | |
---|
2024 | foreach($yValues as $value) { |
---|
2025 | if ($value <= 0.0) { |
---|
2026 | return PHPExcel_Calculation_Functions::NaN(); |
---|
2027 | } |
---|
2028 | } |
---|
2029 | |
---|
2030 | |
---|
2031 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
2032 | return PHPExcel_Calculation_Functions::NA(); |
---|
2033 | } elseif ($yValueCount == 1) { |
---|
2034 | return 1; |
---|
2035 | } |
---|
2036 | |
---|
2037 | $bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL,$yValues,$xValues,$const); |
---|
2038 | if ($stats) { |
---|
2039 | return array( array( $bestFitExponential->getSlope(), |
---|
2040 | $bestFitExponential->getSlopeSE(), |
---|
2041 | $bestFitExponential->getGoodnessOfFit(), |
---|
2042 | $bestFitExponential->getF(), |
---|
2043 | $bestFitExponential->getSSRegression(), |
---|
2044 | ), |
---|
2045 | array( $bestFitExponential->getIntersect(), |
---|
2046 | $bestFitExponential->getIntersectSE(), |
---|
2047 | $bestFitExponential->getStdevOfResiduals(), |
---|
2048 | $bestFitExponential->getDFResiduals(), |
---|
2049 | $bestFitExponential->getSSResiduals() |
---|
2050 | ) |
---|
2051 | ); |
---|
2052 | } else { |
---|
2053 | return array( $bestFitExponential->getSlope(), |
---|
2054 | $bestFitExponential->getIntersect() |
---|
2055 | ); |
---|
2056 | } |
---|
2057 | } // function LOGEST() |
---|
2058 | |
---|
2059 | |
---|
2060 | /** |
---|
2061 | * LOGINV |
---|
2062 | * |
---|
2063 | * Returns the inverse of the normal cumulative distribution |
---|
2064 | * |
---|
2065 | * @param float $probability |
---|
2066 | * @param float $mean |
---|
2067 | * @param float $stdDev |
---|
2068 | * @return float |
---|
2069 | * |
---|
2070 | * @todo Try implementing P J Acklam's refinement algorithm for greater |
---|
2071 | * accuracy if I can get my head round the mathematics |
---|
2072 | * (as described at) http://home.online.no/~pjacklam/notes/invnorm/ |
---|
2073 | */ |
---|
2074 | public static function LOGINV($probability, $mean, $stdDev) { |
---|
2075 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
2076 | $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
---|
2077 | $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
---|
2078 | |
---|
2079 | if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) { |
---|
2080 | if (($probability < 0) || ($probability > 1) || ($stdDev <= 0)) { |
---|
2081 | return PHPExcel_Calculation_Functions::NaN(); |
---|
2082 | } |
---|
2083 | return exp($mean + $stdDev * self::NORMSINV($probability)); |
---|
2084 | } |
---|
2085 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
2086 | } // function LOGINV() |
---|
2087 | |
---|
2088 | |
---|
2089 | /** |
---|
2090 | * LOGNORMDIST |
---|
2091 | * |
---|
2092 | * Returns the cumulative lognormal distribution of x, where ln(x) is normally distributed |
---|
2093 | * with parameters mean and standard_dev. |
---|
2094 | * |
---|
2095 | * @param float $value |
---|
2096 | * @param float $mean |
---|
2097 | * @param float $stdDev |
---|
2098 | * @return float |
---|
2099 | */ |
---|
2100 | public static function LOGNORMDIST($value, $mean, $stdDev) { |
---|
2101 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
2102 | $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
---|
2103 | $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
---|
2104 | |
---|
2105 | if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) { |
---|
2106 | if (($value <= 0) || ($stdDev <= 0)) { |
---|
2107 | return PHPExcel_Calculation_Functions::NaN(); |
---|
2108 | } |
---|
2109 | return self::NORMSDIST((log($value) - $mean) / $stdDev); |
---|
2110 | } |
---|
2111 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
2112 | } // function LOGNORMDIST() |
---|
2113 | |
---|
2114 | |
---|
2115 | /** |
---|
2116 | * MAX |
---|
2117 | * |
---|
2118 | * MAX returns the value of the element of the values passed that has the highest value, |
---|
2119 | * with negative numbers considered smaller than positive numbers. |
---|
2120 | * |
---|
2121 | * Excel Function: |
---|
2122 | * MAX(value1[,value2[, ...]]) |
---|
2123 | * |
---|
2124 | * @access public |
---|
2125 | * @category Statistical Functions |
---|
2126 | * @param mixed $arg,... Data values |
---|
2127 | * @return float |
---|
2128 | */ |
---|
2129 | public static function MAX() { |
---|
2130 | // Return value |
---|
2131 | $returnValue = null; |
---|
2132 | |
---|
2133 | // Loop through arguments |
---|
2134 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
2135 | foreach ($aArgs as $arg) { |
---|
2136 | // Is it a numeric value? |
---|
2137 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
2138 | if ((is_null($returnValue)) || ($arg > $returnValue)) { |
---|
2139 | $returnValue = $arg; |
---|
2140 | } |
---|
2141 | } |
---|
2142 | } |
---|
2143 | |
---|
2144 | // Return |
---|
2145 | if(is_null($returnValue)) { |
---|
2146 | return 0; |
---|
2147 | } |
---|
2148 | return $returnValue; |
---|
2149 | } // function MAX() |
---|
2150 | |
---|
2151 | |
---|
2152 | /** |
---|
2153 | * MAXA |
---|
2154 | * |
---|
2155 | * Returns the greatest value in a list of arguments, including numbers, text, and logical values |
---|
2156 | * |
---|
2157 | * Excel Function: |
---|
2158 | * MAXA(value1[,value2[, ...]]) |
---|
2159 | * |
---|
2160 | * @access public |
---|
2161 | * @category Statistical Functions |
---|
2162 | * @param mixed $arg,... Data values |
---|
2163 | * @return float |
---|
2164 | */ |
---|
2165 | public static function MAXA() { |
---|
2166 | // Return value |
---|
2167 | $returnValue = null; |
---|
2168 | |
---|
2169 | // Loop through arguments |
---|
2170 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
2171 | foreach ($aArgs as $arg) { |
---|
2172 | // Is it a numeric value? |
---|
2173 | if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { |
---|
2174 | if (is_bool($arg)) { |
---|
2175 | $arg = (integer) $arg; |
---|
2176 | } elseif (is_string($arg)) { |
---|
2177 | $arg = 0; |
---|
2178 | } |
---|
2179 | if ((is_null($returnValue)) || ($arg > $returnValue)) { |
---|
2180 | $returnValue = $arg; |
---|
2181 | } |
---|
2182 | } |
---|
2183 | } |
---|
2184 | |
---|
2185 | // Return |
---|
2186 | if(is_null($returnValue)) { |
---|
2187 | return 0; |
---|
2188 | } |
---|
2189 | return $returnValue; |
---|
2190 | } // function MAXA() |
---|
2191 | |
---|
2192 | |
---|
2193 | /** |
---|
2194 | * MAXIF |
---|
2195 | * |
---|
2196 | * Counts the maximum value within a range of cells that contain numbers within the list of arguments |
---|
2197 | * |
---|
2198 | * Excel Function: |
---|
2199 | * MAXIF(value1[,value2[, ...]],condition) |
---|
2200 | * |
---|
2201 | * @access public |
---|
2202 | * @category Mathematical and Trigonometric Functions |
---|
2203 | * @param mixed $arg,... Data values |
---|
2204 | * @param string $condition The criteria that defines which cells will be checked. |
---|
2205 | * @return float |
---|
2206 | */ |
---|
2207 | public static function MAXIF($aArgs,$condition,$sumArgs = array()) { |
---|
2208 | // Return value |
---|
2209 | $returnValue = null; |
---|
2210 | |
---|
2211 | $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs); |
---|
2212 | $sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs); |
---|
2213 | if (empty($sumArgs)) { |
---|
2214 | $sumArgs = $aArgs; |
---|
2215 | } |
---|
2216 | $condition = PHPExcel_Calculation_Functions::_ifCondition($condition); |
---|
2217 | // Loop through arguments |
---|
2218 | foreach ($aArgs as $key => $arg) { |
---|
2219 | if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); } |
---|
2220 | $testCondition = '='.$arg.$condition; |
---|
2221 | if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) { |
---|
2222 | if ((is_null($returnValue)) || ($arg > $returnValue)) { |
---|
2223 | $returnValue = $arg; |
---|
2224 | } |
---|
2225 | } |
---|
2226 | } |
---|
2227 | |
---|
2228 | // Return |
---|
2229 | return $returnValue; |
---|
2230 | } // function MAXIF() |
---|
2231 | |
---|
2232 | |
---|
2233 | /** |
---|
2234 | * MEDIAN |
---|
2235 | * |
---|
2236 | * Returns the median of the given numbers. The median is the number in the middle of a set of numbers. |
---|
2237 | * |
---|
2238 | * Excel Function: |
---|
2239 | * MEDIAN(value1[,value2[, ...]]) |
---|
2240 | * |
---|
2241 | * @access public |
---|
2242 | * @category Statistical Functions |
---|
2243 | * @param mixed $arg,... Data values |
---|
2244 | * @return float |
---|
2245 | */ |
---|
2246 | public static function MEDIAN() { |
---|
2247 | // Return value |
---|
2248 | $returnValue = PHPExcel_Calculation_Functions::NaN(); |
---|
2249 | |
---|
2250 | $mArgs = array(); |
---|
2251 | // Loop through arguments |
---|
2252 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
2253 | foreach ($aArgs as $arg) { |
---|
2254 | // Is it a numeric value? |
---|
2255 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
2256 | $mArgs[] = $arg; |
---|
2257 | } |
---|
2258 | } |
---|
2259 | |
---|
2260 | $mValueCount = count($mArgs); |
---|
2261 | if ($mValueCount > 0) { |
---|
2262 | sort($mArgs,SORT_NUMERIC); |
---|
2263 | $mValueCount = $mValueCount / 2; |
---|
2264 | if ($mValueCount == floor($mValueCount)) { |
---|
2265 | $returnValue = ($mArgs[$mValueCount--] + $mArgs[$mValueCount]) / 2; |
---|
2266 | } else { |
---|
2267 | $mValueCount == floor($mValueCount); |
---|
2268 | $returnValue = $mArgs[$mValueCount]; |
---|
2269 | } |
---|
2270 | } |
---|
2271 | |
---|
2272 | // Return |
---|
2273 | return $returnValue; |
---|
2274 | } // function MEDIAN() |
---|
2275 | |
---|
2276 | |
---|
2277 | /** |
---|
2278 | * MIN |
---|
2279 | * |
---|
2280 | * MIN returns the value of the element of the values passed that has the smallest value, |
---|
2281 | * with negative numbers considered smaller than positive numbers. |
---|
2282 | * |
---|
2283 | * Excel Function: |
---|
2284 | * MIN(value1[,value2[, ...]]) |
---|
2285 | * |
---|
2286 | * @access public |
---|
2287 | * @category Statistical Functions |
---|
2288 | * @param mixed $arg,... Data values |
---|
2289 | * @return float |
---|
2290 | */ |
---|
2291 | public static function MIN() { |
---|
2292 | // Return value |
---|
2293 | $returnValue = null; |
---|
2294 | |
---|
2295 | // Loop through arguments |
---|
2296 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
2297 | foreach ($aArgs as $arg) { |
---|
2298 | // Is it a numeric value? |
---|
2299 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
2300 | if ((is_null($returnValue)) || ($arg < $returnValue)) { |
---|
2301 | $returnValue = $arg; |
---|
2302 | } |
---|
2303 | } |
---|
2304 | } |
---|
2305 | |
---|
2306 | // Return |
---|
2307 | if(is_null($returnValue)) { |
---|
2308 | return 0; |
---|
2309 | } |
---|
2310 | return $returnValue; |
---|
2311 | } // function MIN() |
---|
2312 | |
---|
2313 | |
---|
2314 | /** |
---|
2315 | * MINA |
---|
2316 | * |
---|
2317 | * Returns the smallest value in a list of arguments, including numbers, text, and logical values |
---|
2318 | * |
---|
2319 | * Excel Function: |
---|
2320 | * MINA(value1[,value2[, ...]]) |
---|
2321 | * |
---|
2322 | * @access public |
---|
2323 | * @category Statistical Functions |
---|
2324 | * @param mixed $arg,... Data values |
---|
2325 | * @return float |
---|
2326 | */ |
---|
2327 | public static function MINA() { |
---|
2328 | // Return value |
---|
2329 | $returnValue = null; |
---|
2330 | |
---|
2331 | // Loop through arguments |
---|
2332 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
2333 | foreach ($aArgs as $arg) { |
---|
2334 | // Is it a numeric value? |
---|
2335 | if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { |
---|
2336 | if (is_bool($arg)) { |
---|
2337 | $arg = (integer) $arg; |
---|
2338 | } elseif (is_string($arg)) { |
---|
2339 | $arg = 0; |
---|
2340 | } |
---|
2341 | if ((is_null($returnValue)) || ($arg < $returnValue)) { |
---|
2342 | $returnValue = $arg; |
---|
2343 | } |
---|
2344 | } |
---|
2345 | } |
---|
2346 | |
---|
2347 | // Return |
---|
2348 | if(is_null($returnValue)) { |
---|
2349 | return 0; |
---|
2350 | } |
---|
2351 | return $returnValue; |
---|
2352 | } // function MINA() |
---|
2353 | |
---|
2354 | |
---|
2355 | /** |
---|
2356 | * MINIF |
---|
2357 | * |
---|
2358 | * Returns the minimum value within a range of cells that contain numbers within the list of arguments |
---|
2359 | * |
---|
2360 | * Excel Function: |
---|
2361 | * MINIF(value1[,value2[, ...]],condition) |
---|
2362 | * |
---|
2363 | * @access public |
---|
2364 | * @category Mathematical and Trigonometric Functions |
---|
2365 | * @param mixed $arg,... Data values |
---|
2366 | * @param string $condition The criteria that defines which cells will be checked. |
---|
2367 | * @return float |
---|
2368 | */ |
---|
2369 | public static function MINIF($aArgs,$condition,$sumArgs = array()) { |
---|
2370 | // Return value |
---|
2371 | $returnValue = null; |
---|
2372 | |
---|
2373 | $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs); |
---|
2374 | $sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs); |
---|
2375 | if (empty($sumArgs)) { |
---|
2376 | $sumArgs = $aArgs; |
---|
2377 | } |
---|
2378 | $condition = PHPExcel_Calculation_Functions::_ifCondition($condition); |
---|
2379 | // Loop through arguments |
---|
2380 | foreach ($aArgs as $key => $arg) { |
---|
2381 | if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); } |
---|
2382 | $testCondition = '='.$arg.$condition; |
---|
2383 | if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) { |
---|
2384 | if ((is_null($returnValue)) || ($arg < $returnValue)) { |
---|
2385 | $returnValue = $arg; |
---|
2386 | } |
---|
2387 | } |
---|
2388 | } |
---|
2389 | |
---|
2390 | // Return |
---|
2391 | return $returnValue; |
---|
2392 | } // function MINIF() |
---|
2393 | |
---|
2394 | |
---|
2395 | // |
---|
2396 | // Special variant of array_count_values that isn't limited to strings and integers, |
---|
2397 | // but can work with floating point numbers as values |
---|
2398 | // |
---|
2399 | private static function _modeCalc($data) { |
---|
2400 | $frequencyArray = array(); |
---|
2401 | foreach($data as $datum) { |
---|
2402 | $found = False; |
---|
2403 | foreach($frequencyArray as $key => $value) { |
---|
2404 | if ((string) $value['value'] == (string) $datum) { |
---|
2405 | ++$frequencyArray[$key]['frequency']; |
---|
2406 | $found = True; |
---|
2407 | break; |
---|
2408 | } |
---|
2409 | } |
---|
2410 | if (!$found) { |
---|
2411 | $frequencyArray[] = array('value' => $datum, |
---|
2412 | 'frequency' => 1 ); |
---|
2413 | } |
---|
2414 | } |
---|
2415 | |
---|
2416 | foreach($frequencyArray as $key => $value) { |
---|
2417 | $frequencyList[$key] = $value['frequency']; |
---|
2418 | $valueList[$key] = $value['value']; |
---|
2419 | } |
---|
2420 | array_multisort($frequencyList, SORT_DESC, $valueList, SORT_ASC, SORT_NUMERIC, $frequencyArray); |
---|
2421 | |
---|
2422 | if ($frequencyArray[0]['frequency'] == 1) { |
---|
2423 | return PHPExcel_Calculation_Functions::NA(); |
---|
2424 | } |
---|
2425 | return $frequencyArray[0]['value']; |
---|
2426 | } // function _modeCalc() |
---|
2427 | |
---|
2428 | |
---|
2429 | /** |
---|
2430 | * MODE |
---|
2431 | * |
---|
2432 | * Returns the most frequently occurring, or repetitive, value in an array or range of data |
---|
2433 | * |
---|
2434 | * Excel Function: |
---|
2435 | * MODE(value1[,value2[, ...]]) |
---|
2436 | * |
---|
2437 | * @access public |
---|
2438 | * @category Statistical Functions |
---|
2439 | * @param mixed $arg,... Data values |
---|
2440 | * @return float |
---|
2441 | */ |
---|
2442 | public static function MODE() { |
---|
2443 | // Return value |
---|
2444 | $returnValue = PHPExcel_Calculation_Functions::NA(); |
---|
2445 | |
---|
2446 | // Loop through arguments |
---|
2447 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
2448 | |
---|
2449 | $mArgs = array(); |
---|
2450 | foreach ($aArgs as $arg) { |
---|
2451 | // Is it a numeric value? |
---|
2452 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
2453 | $mArgs[] = $arg; |
---|
2454 | } |
---|
2455 | } |
---|
2456 | |
---|
2457 | if (!empty($mArgs)) { |
---|
2458 | return self::_modeCalc($mArgs); |
---|
2459 | } |
---|
2460 | |
---|
2461 | // Return |
---|
2462 | return $returnValue; |
---|
2463 | } // function MODE() |
---|
2464 | |
---|
2465 | |
---|
2466 | /** |
---|
2467 | * NEGBINOMDIST |
---|
2468 | * |
---|
2469 | * Returns the negative binomial distribution. NEGBINOMDIST returns the probability that |
---|
2470 | * there will be number_f failures before the number_s-th success, when the constant |
---|
2471 | * probability of a success is probability_s. This function is similar to the binomial |
---|
2472 | * distribution, except that the number of successes is fixed, and the number of trials is |
---|
2473 | * variable. Like the binomial, trials are assumed to be independent. |
---|
2474 | * |
---|
2475 | * @param float $failures Number of Failures |
---|
2476 | * @param float $successes Threshold number of Successes |
---|
2477 | * @param float $probability Probability of success on each trial |
---|
2478 | * @return float |
---|
2479 | * |
---|
2480 | */ |
---|
2481 | public static function NEGBINOMDIST($failures, $successes, $probability) { |
---|
2482 | $failures = floor(PHPExcel_Calculation_Functions::flattenSingleValue($failures)); |
---|
2483 | $successes = floor(PHPExcel_Calculation_Functions::flattenSingleValue($successes)); |
---|
2484 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
2485 | |
---|
2486 | if ((is_numeric($failures)) && (is_numeric($successes)) && (is_numeric($probability))) { |
---|
2487 | if (($failures < 0) || ($successes < 1)) { |
---|
2488 | return PHPExcel_Calculation_Functions::NaN(); |
---|
2489 | } |
---|
2490 | if (($probability < 0) || ($probability > 1)) { |
---|
2491 | return PHPExcel_Calculation_Functions::NaN(); |
---|
2492 | } |
---|
2493 | if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) { |
---|
2494 | if (($failures + $successes - 1) <= 0) { |
---|
2495 | return PHPExcel_Calculation_Functions::NaN(); |
---|
2496 | } |
---|
2497 | } |
---|
2498 | return (PHPExcel_Calculation_MathTrig::COMBIN($failures + $successes - 1,$successes - 1)) * (pow($probability,$successes)) * (pow(1 - $probability,$failures)) ; |
---|
2499 | } |
---|
2500 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
2501 | } // function NEGBINOMDIST() |
---|
2502 | |
---|
2503 | |
---|
2504 | /** |
---|
2505 | * NORMDIST |
---|
2506 | * |
---|
2507 | * Returns the normal distribution for the specified mean and standard deviation. This |
---|
2508 | * function has a very wide range of applications in statistics, including hypothesis |
---|
2509 | * testing. |
---|
2510 | * |
---|
2511 | * @param float $value |
---|
2512 | * @param float $mean Mean Value |
---|
2513 | * @param float $stdDev Standard Deviation |
---|
2514 | * @param boolean $cumulative |
---|
2515 | * @return float |
---|
2516 | * |
---|
2517 | */ |
---|
2518 | public static function NORMDIST($value, $mean, $stdDev, $cumulative) { |
---|
2519 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
2520 | $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
---|
2521 | $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
---|
2522 | |
---|
2523 | if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) { |
---|
2524 | if ($stdDev < 0) { |
---|
2525 | return PHPExcel_Calculation_Functions::NaN(); |
---|
2526 | } |
---|
2527 | if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
---|
2528 | if ($cumulative) { |
---|
2529 | return 0.5 * (1 + PHPExcel_Calculation_Engineering::_erfVal(($value - $mean) / ($stdDev * sqrt(2)))); |
---|
2530 | } else { |
---|
2531 | return (1 / (SQRT2PI * $stdDev)) * exp(0 - (pow($value - $mean,2) / (2 * ($stdDev * $stdDev)))); |
---|
2532 | } |
---|
2533 | } |
---|
2534 | } |
---|
2535 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
2536 | } // function NORMDIST() |
---|
2537 | |
---|
2538 | |
---|
2539 | /** |
---|
2540 | * NORMINV |
---|
2541 | * |
---|
2542 | * Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation. |
---|
2543 | * |
---|
2544 | * @param float $value |
---|
2545 | * @param float $mean Mean Value |
---|
2546 | * @param float $stdDev Standard Deviation |
---|
2547 | * @return float |
---|
2548 | * |
---|
2549 | */ |
---|
2550 | public static function NORMINV($probability,$mean,$stdDev) { |
---|
2551 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
2552 | $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
---|
2553 | $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
---|
2554 | |
---|
2555 | if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) { |
---|
2556 | if (($probability < 0) || ($probability > 1)) { |
---|
2557 | return PHPExcel_Calculation_Functions::NaN(); |
---|
2558 | } |
---|
2559 | if ($stdDev < 0) { |
---|
2560 | return PHPExcel_Calculation_Functions::NaN(); |
---|
2561 | } |
---|
2562 | return (self::_inverse_ncdf($probability) * $stdDev) + $mean; |
---|
2563 | } |
---|
2564 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
2565 | } // function NORMINV() |
---|
2566 | |
---|
2567 | |
---|
2568 | /** |
---|
2569 | * NORMSDIST |
---|
2570 | * |
---|
2571 | * Returns the standard normal cumulative distribution function. The distribution has |
---|
2572 | * a mean of 0 (zero) and a standard deviation of one. Use this function in place of a |
---|
2573 | * table of standard normal curve areas. |
---|
2574 | * |
---|
2575 | * @param float $value |
---|
2576 | * @return float |
---|
2577 | */ |
---|
2578 | public static function NORMSDIST($value) { |
---|
2579 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
2580 | |
---|
2581 | return self::NORMDIST($value, 0, 1, True); |
---|
2582 | } // function NORMSDIST() |
---|
2583 | |
---|
2584 | |
---|
2585 | /** |
---|
2586 | * NORMSINV |
---|
2587 | * |
---|
2588 | * Returns the inverse of the standard normal cumulative distribution |
---|
2589 | * |
---|
2590 | * @param float $value |
---|
2591 | * @return float |
---|
2592 | */ |
---|
2593 | public static function NORMSINV($value) { |
---|
2594 | return self::NORMINV($value, 0, 1); |
---|
2595 | } // function NORMSINV() |
---|
2596 | |
---|
2597 | |
---|
2598 | /** |
---|
2599 | * PERCENTILE |
---|
2600 | * |
---|
2601 | * Returns the nth percentile of values in a range.. |
---|
2602 | * |
---|
2603 | * Excel Function: |
---|
2604 | * PERCENTILE(value1[,value2[, ...]],entry) |
---|
2605 | * |
---|
2606 | * @access public |
---|
2607 | * @category Statistical Functions |
---|
2608 | * @param mixed $arg,... Data values |
---|
2609 | * @param float $entry Percentile value in the range 0..1, inclusive. |
---|
2610 | * @return float |
---|
2611 | */ |
---|
2612 | public static function PERCENTILE() { |
---|
2613 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
2614 | |
---|
2615 | // Calculate |
---|
2616 | $entry = array_pop($aArgs); |
---|
2617 | |
---|
2618 | if ((is_numeric($entry)) && (!is_string($entry))) { |
---|
2619 | if (($entry < 0) || ($entry > 1)) { |
---|
2620 | return PHPExcel_Calculation_Functions::NaN(); |
---|
2621 | } |
---|
2622 | $mArgs = array(); |
---|
2623 | foreach ($aArgs as $arg) { |
---|
2624 | // Is it a numeric value? |
---|
2625 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
2626 | $mArgs[] = $arg; |
---|
2627 | } |
---|
2628 | } |
---|
2629 | $mValueCount = count($mArgs); |
---|
2630 | if ($mValueCount > 0) { |
---|
2631 | sort($mArgs); |
---|
2632 | $count = self::COUNT($mArgs); |
---|
2633 | $index = $entry * ($count-1); |
---|
2634 | $iBase = floor($index); |
---|
2635 | if ($index == $iBase) { |
---|
2636 | return $mArgs[$index]; |
---|
2637 | } else { |
---|
2638 | $iNext = $iBase + 1; |
---|
2639 | $iProportion = $index - $iBase; |
---|
2640 | return $mArgs[$iBase] + (($mArgs[$iNext] - $mArgs[$iBase]) * $iProportion) ; |
---|
2641 | } |
---|
2642 | } |
---|
2643 | } |
---|
2644 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
2645 | } // function PERCENTILE() |
---|
2646 | |
---|
2647 | |
---|
2648 | /** |
---|
2649 | * PERCENTRANK |
---|
2650 | * |
---|
2651 | * Returns the rank of a value in a data set as a percentage of the data set. |
---|
2652 | * |
---|
2653 | * @param array of number An array of, or a reference to, a list of numbers. |
---|
2654 | * @param number The number whose rank you want to find. |
---|
2655 | * @param number The number of significant digits for the returned percentage value. |
---|
2656 | * @return float |
---|
2657 | */ |
---|
2658 | public static function PERCENTRANK($valueSet,$value,$significance=3) { |
---|
2659 | $valueSet = PHPExcel_Calculation_Functions::flattenArray($valueSet); |
---|
2660 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
2661 | $significance = (is_null($significance)) ? 3 : (integer) PHPExcel_Calculation_Functions::flattenSingleValue($significance); |
---|
2662 | |
---|
2663 | foreach($valueSet as $key => $valueEntry) { |
---|
2664 | if (!is_numeric($valueEntry)) { |
---|
2665 | unset($valueSet[$key]); |
---|
2666 | } |
---|
2667 | } |
---|
2668 | sort($valueSet,SORT_NUMERIC); |
---|
2669 | $valueCount = count($valueSet); |
---|
2670 | if ($valueCount == 0) { |
---|
2671 | return PHPExcel_Calculation_Functions::NaN(); |
---|
2672 | } |
---|
2673 | |
---|
2674 | $valueAdjustor = $valueCount - 1; |
---|
2675 | if (($value < $valueSet[0]) || ($value > $valueSet[$valueAdjustor])) { |
---|
2676 | return PHPExcel_Calculation_Functions::NA(); |
---|
2677 | } |
---|
2678 | |
---|
2679 | $pos = array_search($value,$valueSet); |
---|
2680 | if ($pos === False) { |
---|
2681 | $pos = 0; |
---|
2682 | $testValue = $valueSet[0]; |
---|
2683 | while ($testValue < $value) { |
---|
2684 | $testValue = $valueSet[++$pos]; |
---|
2685 | } |
---|
2686 | --$pos; |
---|
2687 | $pos += (($value - $valueSet[$pos]) / ($testValue - $valueSet[$pos])); |
---|
2688 | } |
---|
2689 | |
---|
2690 | return round($pos / $valueAdjustor,$significance); |
---|
2691 | } // function PERCENTRANK() |
---|
2692 | |
---|
2693 | |
---|
2694 | /** |
---|
2695 | * PERMUT |
---|
2696 | * |
---|
2697 | * Returns the number of permutations for a given number of objects that can be |
---|
2698 | * selected from number objects. A permutation is any set or subset of objects or |
---|
2699 | * events where internal order is significant. Permutations are different from |
---|
2700 | * combinations, for which the internal order is not significant. Use this function |
---|
2701 | * for lottery-style probability calculations. |
---|
2702 | * |
---|
2703 | * @param int $numObjs Number of different objects |
---|
2704 | * @param int $numInSet Number of objects in each permutation |
---|
2705 | * @return int Number of permutations |
---|
2706 | */ |
---|
2707 | public static function PERMUT($numObjs,$numInSet) { |
---|
2708 | $numObjs = PHPExcel_Calculation_Functions::flattenSingleValue($numObjs); |
---|
2709 | $numInSet = PHPExcel_Calculation_Functions::flattenSingleValue($numInSet); |
---|
2710 | |
---|
2711 | if ((is_numeric($numObjs)) && (is_numeric($numInSet))) { |
---|
2712 | $numInSet = floor($numInSet); |
---|
2713 | if ($numObjs < $numInSet) { |
---|
2714 | return PHPExcel_Calculation_Functions::NaN(); |
---|
2715 | } |
---|
2716 | return round(PHPExcel_Calculation_MathTrig::FACT($numObjs) / PHPExcel_Calculation_MathTrig::FACT($numObjs - $numInSet)); |
---|
2717 | } |
---|
2718 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
2719 | } // function PERMUT() |
---|
2720 | |
---|
2721 | |
---|
2722 | /** |
---|
2723 | * POISSON |
---|
2724 | * |
---|
2725 | * Returns the Poisson distribution. A common application of the Poisson distribution |
---|
2726 | * is predicting the number of events over a specific time, such as the number of |
---|
2727 | * cars arriving at a toll plaza in 1 minute. |
---|
2728 | * |
---|
2729 | * @param float $value |
---|
2730 | * @param float $mean Mean Value |
---|
2731 | * @param boolean $cumulative |
---|
2732 | * @return float |
---|
2733 | * |
---|
2734 | */ |
---|
2735 | public static function POISSON($value, $mean, $cumulative) { |
---|
2736 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
2737 | $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
---|
2738 | |
---|
2739 | if ((is_numeric($value)) && (is_numeric($mean))) { |
---|
2740 | if (($value <= 0) || ($mean <= 0)) { |
---|
2741 | return PHPExcel_Calculation_Functions::NaN(); |
---|
2742 | } |
---|
2743 | if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
---|
2744 | if ($cumulative) { |
---|
2745 | $summer = 0; |
---|
2746 | for ($i = 0; $i <= floor($value); ++$i) { |
---|
2747 | $summer += pow($mean,$i) / PHPExcel_Calculation_MathTrig::FACT($i); |
---|
2748 | } |
---|
2749 | return exp(0-$mean) * $summer; |
---|
2750 | } else { |
---|
2751 | return (exp(0-$mean) * pow($mean,$value)) / PHPExcel_Calculation_MathTrig::FACT($value); |
---|
2752 | } |
---|
2753 | } |
---|
2754 | } |
---|
2755 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
2756 | } // function POISSON() |
---|
2757 | |
---|
2758 | |
---|
2759 | /** |
---|
2760 | * QUARTILE |
---|
2761 | * |
---|
2762 | * Returns the quartile of a data set. |
---|
2763 | * |
---|
2764 | * Excel Function: |
---|
2765 | * QUARTILE(value1[,value2[, ...]],entry) |
---|
2766 | * |
---|
2767 | * @access public |
---|
2768 | * @category Statistical Functions |
---|
2769 | * @param mixed $arg,... Data values |
---|
2770 | * @param int $entry Quartile value in the range 1..3, inclusive. |
---|
2771 | * @return float |
---|
2772 | */ |
---|
2773 | public static function QUARTILE() { |
---|
2774 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
2775 | |
---|
2776 | // Calculate |
---|
2777 | $entry = floor(array_pop($aArgs)); |
---|
2778 | |
---|
2779 | if ((is_numeric($entry)) && (!is_string($entry))) { |
---|
2780 | $entry /= 4; |
---|
2781 | if (($entry < 0) || ($entry > 1)) { |
---|
2782 | return PHPExcel_Calculation_Functions::NaN(); |
---|
2783 | } |
---|
2784 | return self::PERCENTILE($aArgs,$entry); |
---|
2785 | } |
---|
2786 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
2787 | } // function QUARTILE() |
---|
2788 | |
---|
2789 | |
---|
2790 | /** |
---|
2791 | * RANK |
---|
2792 | * |
---|
2793 | * Returns the rank of a number in a list of numbers. |
---|
2794 | * |
---|
2795 | * @param number The number whose rank you want to find. |
---|
2796 | * @param array of number An array of, or a reference to, a list of numbers. |
---|
2797 | * @param mixed Order to sort the values in the value set |
---|
2798 | * @return float |
---|
2799 | */ |
---|
2800 | public static function RANK($value,$valueSet,$order=0) { |
---|
2801 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
2802 | $valueSet = PHPExcel_Calculation_Functions::flattenArray($valueSet); |
---|
2803 | $order = (is_null($order)) ? 0 : (integer) PHPExcel_Calculation_Functions::flattenSingleValue($order); |
---|
2804 | |
---|
2805 | foreach($valueSet as $key => $valueEntry) { |
---|
2806 | if (!is_numeric($valueEntry)) { |
---|
2807 | unset($valueSet[$key]); |
---|
2808 | } |
---|
2809 | } |
---|
2810 | |
---|
2811 | if ($order == 0) { |
---|
2812 | rsort($valueSet,SORT_NUMERIC); |
---|
2813 | } else { |
---|
2814 | sort($valueSet,SORT_NUMERIC); |
---|
2815 | } |
---|
2816 | $pos = array_search($value,$valueSet); |
---|
2817 | if ($pos === False) { |
---|
2818 | return PHPExcel_Calculation_Functions::NA(); |
---|
2819 | } |
---|
2820 | |
---|
2821 | return ++$pos; |
---|
2822 | } // function RANK() |
---|
2823 | |
---|
2824 | |
---|
2825 | /** |
---|
2826 | * RSQ |
---|
2827 | * |
---|
2828 | * Returns the square of the Pearson product moment correlation coefficient through data points in known_y's and known_x's. |
---|
2829 | * |
---|
2830 | * @param array of mixed Data Series Y |
---|
2831 | * @param array of mixed Data Series X |
---|
2832 | * @return float |
---|
2833 | */ |
---|
2834 | public static function RSQ($yValues,$xValues) { |
---|
2835 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
2836 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
2837 | } |
---|
2838 | $yValueCount = count($yValues); |
---|
2839 | $xValueCount = count($xValues); |
---|
2840 | |
---|
2841 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
2842 | return PHPExcel_Calculation_Functions::NA(); |
---|
2843 | } elseif ($yValueCount == 1) { |
---|
2844 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
2845 | } |
---|
2846 | |
---|
2847 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
---|
2848 | return $bestFitLinear->getGoodnessOfFit(); |
---|
2849 | } // function RSQ() |
---|
2850 | |
---|
2851 | |
---|
2852 | /** |
---|
2853 | * SKEW |
---|
2854 | * |
---|
2855 | * Returns the skewness of a distribution. Skewness characterizes the degree of asymmetry |
---|
2856 | * of a distribution around its mean. Positive skewness indicates a distribution with an |
---|
2857 | * asymmetric tail extending toward more positive values. Negative skewness indicates a |
---|
2858 | * distribution with an asymmetric tail extending toward more negative values. |
---|
2859 | * |
---|
2860 | * @param array Data Series |
---|
2861 | * @return float |
---|
2862 | */ |
---|
2863 | public static function SKEW() { |
---|
2864 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
2865 | $mean = self::AVERAGE($aArgs); |
---|
2866 | $stdDev = self::STDEV($aArgs); |
---|
2867 | |
---|
2868 | $count = $summer = 0; |
---|
2869 | // Loop through arguments |
---|
2870 | foreach ($aArgs as $k => $arg) { |
---|
2871 | if ((is_bool($arg)) && |
---|
2872 | (!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
---|
2873 | } else { |
---|
2874 | // Is it a numeric value? |
---|
2875 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
2876 | $summer += pow((($arg - $mean) / $stdDev),3) ; |
---|
2877 | ++$count; |
---|
2878 | } |
---|
2879 | } |
---|
2880 | } |
---|
2881 | |
---|
2882 | // Return |
---|
2883 | if ($count > 2) { |
---|
2884 | return $summer * ($count / (($count-1) * ($count-2))); |
---|
2885 | } |
---|
2886 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
2887 | } // function SKEW() |
---|
2888 | |
---|
2889 | |
---|
2890 | /** |
---|
2891 | * SLOPE |
---|
2892 | * |
---|
2893 | * Returns the slope of the linear regression line through data points in known_y's and known_x's. |
---|
2894 | * |
---|
2895 | * @param array of mixed Data Series Y |
---|
2896 | * @param array of mixed Data Series X |
---|
2897 | * @return float |
---|
2898 | */ |
---|
2899 | public static function SLOPE($yValues,$xValues) { |
---|
2900 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
2901 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
2902 | } |
---|
2903 | $yValueCount = count($yValues); |
---|
2904 | $xValueCount = count($xValues); |
---|
2905 | |
---|
2906 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
2907 | return PHPExcel_Calculation_Functions::NA(); |
---|
2908 | } elseif ($yValueCount == 1) { |
---|
2909 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
2910 | } |
---|
2911 | |
---|
2912 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
---|
2913 | return $bestFitLinear->getSlope(); |
---|
2914 | } // function SLOPE() |
---|
2915 | |
---|
2916 | |
---|
2917 | /** |
---|
2918 | * SMALL |
---|
2919 | * |
---|
2920 | * Returns the nth smallest value in a data set. You can use this function to |
---|
2921 | * select a value based on its relative standing. |
---|
2922 | * |
---|
2923 | * Excel Function: |
---|
2924 | * SMALL(value1[,value2[, ...]],entry) |
---|
2925 | * |
---|
2926 | * @access public |
---|
2927 | * @category Statistical Functions |
---|
2928 | * @param mixed $arg,... Data values |
---|
2929 | * @param int $entry Position (ordered from the smallest) in the array or range of data to return |
---|
2930 | * @return float |
---|
2931 | */ |
---|
2932 | public static function SMALL() { |
---|
2933 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
2934 | |
---|
2935 | // Calculate |
---|
2936 | $entry = array_pop($aArgs); |
---|
2937 | |
---|
2938 | if ((is_numeric($entry)) && (!is_string($entry))) { |
---|
2939 | $mArgs = array(); |
---|
2940 | foreach ($aArgs as $arg) { |
---|
2941 | // Is it a numeric value? |
---|
2942 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
2943 | $mArgs[] = $arg; |
---|
2944 | } |
---|
2945 | } |
---|
2946 | $count = self::COUNT($mArgs); |
---|
2947 | $entry = floor(--$entry); |
---|
2948 | if (($entry < 0) || ($entry >= $count) || ($count == 0)) { |
---|
2949 | return PHPExcel_Calculation_Functions::NaN(); |
---|
2950 | } |
---|
2951 | sort($mArgs); |
---|
2952 | return $mArgs[$entry]; |
---|
2953 | } |
---|
2954 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
2955 | } // function SMALL() |
---|
2956 | |
---|
2957 | |
---|
2958 | /** |
---|
2959 | * STANDARDIZE |
---|
2960 | * |
---|
2961 | * Returns a normalized value from a distribution characterized by mean and standard_dev. |
---|
2962 | * |
---|
2963 | * @param float $value Value to normalize |
---|
2964 | * @param float $mean Mean Value |
---|
2965 | * @param float $stdDev Standard Deviation |
---|
2966 | * @return float Standardized value |
---|
2967 | */ |
---|
2968 | public static function STANDARDIZE($value,$mean,$stdDev) { |
---|
2969 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
2970 | $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
---|
2971 | $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
---|
2972 | |
---|
2973 | if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) { |
---|
2974 | if ($stdDev <= 0) { |
---|
2975 | return PHPExcel_Calculation_Functions::NaN(); |
---|
2976 | } |
---|
2977 | return ($value - $mean) / $stdDev ; |
---|
2978 | } |
---|
2979 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
2980 | } // function STANDARDIZE() |
---|
2981 | |
---|
2982 | |
---|
2983 | /** |
---|
2984 | * STDEV |
---|
2985 | * |
---|
2986 | * Estimates standard deviation based on a sample. The standard deviation is a measure of how |
---|
2987 | * widely values are dispersed from the average value (the mean). |
---|
2988 | * |
---|
2989 | * Excel Function: |
---|
2990 | * STDEV(value1[,value2[, ...]]) |
---|
2991 | * |
---|
2992 | * @access public |
---|
2993 | * @category Statistical Functions |
---|
2994 | * @param mixed $arg,... Data values |
---|
2995 | * @return float |
---|
2996 | */ |
---|
2997 | public static function STDEV() { |
---|
2998 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
2999 | |
---|
3000 | // Return value |
---|
3001 | $returnValue = null; |
---|
3002 | |
---|
3003 | $aMean = self::AVERAGE($aArgs); |
---|
3004 | if (!is_null($aMean)) { |
---|
3005 | $aCount = -1; |
---|
3006 | foreach ($aArgs as $k => $arg) { |
---|
3007 | if ((is_bool($arg)) && |
---|
3008 | ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
---|
3009 | $arg = (integer) $arg; |
---|
3010 | } |
---|
3011 | // Is it a numeric value? |
---|
3012 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
3013 | if (is_null($returnValue)) { |
---|
3014 | $returnValue = pow(($arg - $aMean),2); |
---|
3015 | } else { |
---|
3016 | $returnValue += pow(($arg - $aMean),2); |
---|
3017 | } |
---|
3018 | ++$aCount; |
---|
3019 | } |
---|
3020 | } |
---|
3021 | |
---|
3022 | // Return |
---|
3023 | if (($aCount > 0) && ($returnValue >= 0)) { |
---|
3024 | return sqrt($returnValue / $aCount); |
---|
3025 | } |
---|
3026 | } |
---|
3027 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
3028 | } // function STDEV() |
---|
3029 | |
---|
3030 | |
---|
3031 | /** |
---|
3032 | * STDEVA |
---|
3033 | * |
---|
3034 | * Estimates standard deviation based on a sample, including numbers, text, and logical values |
---|
3035 | * |
---|
3036 | * Excel Function: |
---|
3037 | * STDEVA(value1[,value2[, ...]]) |
---|
3038 | * |
---|
3039 | * @access public |
---|
3040 | * @category Statistical Functions |
---|
3041 | * @param mixed $arg,... Data values |
---|
3042 | * @return float |
---|
3043 | */ |
---|
3044 | public static function STDEVA() { |
---|
3045 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
3046 | |
---|
3047 | // Return value |
---|
3048 | $returnValue = null; |
---|
3049 | |
---|
3050 | $aMean = self::AVERAGEA($aArgs); |
---|
3051 | if (!is_null($aMean)) { |
---|
3052 | $aCount = -1; |
---|
3053 | foreach ($aArgs as $k => $arg) { |
---|
3054 | if ((is_bool($arg)) && |
---|
3055 | (!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
---|
3056 | } else { |
---|
3057 | // Is it a numeric value? |
---|
3058 | if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { |
---|
3059 | if (is_bool($arg)) { |
---|
3060 | $arg = (integer) $arg; |
---|
3061 | } elseif (is_string($arg)) { |
---|
3062 | $arg = 0; |
---|
3063 | } |
---|
3064 | if (is_null($returnValue)) { |
---|
3065 | $returnValue = pow(($arg - $aMean),2); |
---|
3066 | } else { |
---|
3067 | $returnValue += pow(($arg - $aMean),2); |
---|
3068 | } |
---|
3069 | ++$aCount; |
---|
3070 | } |
---|
3071 | } |
---|
3072 | } |
---|
3073 | |
---|
3074 | // Return |
---|
3075 | if (($aCount > 0) && ($returnValue >= 0)) { |
---|
3076 | return sqrt($returnValue / $aCount); |
---|
3077 | } |
---|
3078 | } |
---|
3079 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
3080 | } // function STDEVA() |
---|
3081 | |
---|
3082 | |
---|
3083 | /** |
---|
3084 | * STDEVP |
---|
3085 | * |
---|
3086 | * Calculates standard deviation based on the entire population |
---|
3087 | * |
---|
3088 | * Excel Function: |
---|
3089 | * STDEVP(value1[,value2[, ...]]) |
---|
3090 | * |
---|
3091 | * @access public |
---|
3092 | * @category Statistical Functions |
---|
3093 | * @param mixed $arg,... Data values |
---|
3094 | * @return float |
---|
3095 | */ |
---|
3096 | public static function STDEVP() { |
---|
3097 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
3098 | |
---|
3099 | // Return value |
---|
3100 | $returnValue = null; |
---|
3101 | |
---|
3102 | $aMean = self::AVERAGE($aArgs); |
---|
3103 | if (!is_null($aMean)) { |
---|
3104 | $aCount = 0; |
---|
3105 | foreach ($aArgs as $k => $arg) { |
---|
3106 | if ((is_bool($arg)) && |
---|
3107 | ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
---|
3108 | $arg = (integer) $arg; |
---|
3109 | } |
---|
3110 | // Is it a numeric value? |
---|
3111 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
3112 | if (is_null($returnValue)) { |
---|
3113 | $returnValue = pow(($arg - $aMean),2); |
---|
3114 | } else { |
---|
3115 | $returnValue += pow(($arg - $aMean),2); |
---|
3116 | } |
---|
3117 | ++$aCount; |
---|
3118 | } |
---|
3119 | } |
---|
3120 | |
---|
3121 | // Return |
---|
3122 | if (($aCount > 0) && ($returnValue >= 0)) { |
---|
3123 | return sqrt($returnValue / $aCount); |
---|
3124 | } |
---|
3125 | } |
---|
3126 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
3127 | } // function STDEVP() |
---|
3128 | |
---|
3129 | |
---|
3130 | /** |
---|
3131 | * STDEVPA |
---|
3132 | * |
---|
3133 | * Calculates standard deviation based on the entire population, including numbers, text, and logical values |
---|
3134 | * |
---|
3135 | * Excel Function: |
---|
3136 | * STDEVPA(value1[,value2[, ...]]) |
---|
3137 | * |
---|
3138 | * @access public |
---|
3139 | * @category Statistical Functions |
---|
3140 | * @param mixed $arg,... Data values |
---|
3141 | * @return float |
---|
3142 | */ |
---|
3143 | public static function STDEVPA() { |
---|
3144 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
3145 | |
---|
3146 | // Return value |
---|
3147 | $returnValue = null; |
---|
3148 | |
---|
3149 | $aMean = self::AVERAGEA($aArgs); |
---|
3150 | if (!is_null($aMean)) { |
---|
3151 | $aCount = 0; |
---|
3152 | foreach ($aArgs as $k => $arg) { |
---|
3153 | if ((is_bool($arg)) && |
---|
3154 | (!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
---|
3155 | } else { |
---|
3156 | // Is it a numeric value? |
---|
3157 | if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { |
---|
3158 | if (is_bool($arg)) { |
---|
3159 | $arg = (integer) $arg; |
---|
3160 | } elseif (is_string($arg)) { |
---|
3161 | $arg = 0; |
---|
3162 | } |
---|
3163 | if (is_null($returnValue)) { |
---|
3164 | $returnValue = pow(($arg - $aMean),2); |
---|
3165 | } else { |
---|
3166 | $returnValue += pow(($arg - $aMean),2); |
---|
3167 | } |
---|
3168 | ++$aCount; |
---|
3169 | } |
---|
3170 | } |
---|
3171 | } |
---|
3172 | |
---|
3173 | // Return |
---|
3174 | if (($aCount > 0) && ($returnValue >= 0)) { |
---|
3175 | return sqrt($returnValue / $aCount); |
---|
3176 | } |
---|
3177 | } |
---|
3178 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
3179 | } // function STDEVPA() |
---|
3180 | |
---|
3181 | |
---|
3182 | /** |
---|
3183 | * STEYX |
---|
3184 | * |
---|
3185 | * Returns the standard error of the predicted y-value for each x in the regression. |
---|
3186 | * |
---|
3187 | * @param array of mixed Data Series Y |
---|
3188 | * @param array of mixed Data Series X |
---|
3189 | * @return float |
---|
3190 | */ |
---|
3191 | public static function STEYX($yValues,$xValues) { |
---|
3192 | if (!self::_checkTrendArrays($yValues,$xValues)) { |
---|
3193 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
3194 | } |
---|
3195 | $yValueCount = count($yValues); |
---|
3196 | $xValueCount = count($xValues); |
---|
3197 | |
---|
3198 | if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
---|
3199 | return PHPExcel_Calculation_Functions::NA(); |
---|
3200 | } elseif ($yValueCount == 1) { |
---|
3201 | return PHPExcel_Calculation_Functions::DIV0(); |
---|
3202 | } |
---|
3203 | |
---|
3204 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
---|
3205 | return $bestFitLinear->getStdevOfResiduals(); |
---|
3206 | } // function STEYX() |
---|
3207 | |
---|
3208 | |
---|
3209 | /** |
---|
3210 | * TDIST |
---|
3211 | * |
---|
3212 | * Returns the probability of Student's T distribution. |
---|
3213 | * |
---|
3214 | * @param float $value Value for the function |
---|
3215 | * @param float $degrees degrees of freedom |
---|
3216 | * @param float $tails number of tails (1 or 2) |
---|
3217 | * @return float |
---|
3218 | */ |
---|
3219 | public static function TDIST($value, $degrees, $tails) { |
---|
3220 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
3221 | $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees)); |
---|
3222 | $tails = floor(PHPExcel_Calculation_Functions::flattenSingleValue($tails)); |
---|
3223 | |
---|
3224 | if ((is_numeric($value)) && (is_numeric($degrees)) && (is_numeric($tails))) { |
---|
3225 | if (($value < 0) || ($degrees < 1) || ($tails < 1) || ($tails > 2)) { |
---|
3226 | return PHPExcel_Calculation_Functions::NaN(); |
---|
3227 | } |
---|
3228 | // tdist, which finds the probability that corresponds to a given value |
---|
3229 | // of t with k degrees of freedom. This algorithm is translated from a |
---|
3230 | // pascal function on p81 of "Statistical Computing in Pascal" by D |
---|
3231 | // Cooke, A H Craven & G M Clark (1985: Edward Arnold (Pubs.) Ltd: |
---|
3232 | // London). The above Pascal algorithm is itself a translation of the |
---|
3233 | // fortran algoritm "AS 3" by B E Cooper of the Atlas Computer |
---|
3234 | // Laboratory as reported in (among other places) "Applied Statistics |
---|
3235 | // Algorithms", editied by P Griffiths and I D Hill (1985; Ellis |
---|
3236 | // Horwood Ltd.; W. Sussex, England). |
---|
3237 | $tterm = $degrees; |
---|
3238 | $ttheta = atan2($value,sqrt($tterm)); |
---|
3239 | $tc = cos($ttheta); |
---|
3240 | $ts = sin($ttheta); |
---|
3241 | $tsum = 0; |
---|
3242 | |
---|
3243 | if (($degrees % 2) == 1) { |
---|
3244 | $ti = 3; |
---|
3245 | $tterm = $tc; |
---|
3246 | } else { |
---|
3247 | $ti = 2; |
---|
3248 | $tterm = 1; |
---|
3249 | } |
---|
3250 | |
---|
3251 | $tsum = $tterm; |
---|
3252 | while ($ti < $degrees) { |
---|
3253 | $tterm *= $tc * $tc * ($ti - 1) / $ti; |
---|
3254 | $tsum += $tterm; |
---|
3255 | $ti += 2; |
---|
3256 | } |
---|
3257 | $tsum *= $ts; |
---|
3258 | if (($degrees % 2) == 1) { $tsum = M_2DIVPI * ($tsum + $ttheta); } |
---|
3259 | $tValue = 0.5 * (1 + $tsum); |
---|
3260 | if ($tails == 1) { |
---|
3261 | return 1 - abs($tValue); |
---|
3262 | } else { |
---|
3263 | return 1 - abs((1 - $tValue) - $tValue); |
---|
3264 | } |
---|
3265 | } |
---|
3266 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
3267 | } // function TDIST() |
---|
3268 | |
---|
3269 | |
---|
3270 | /** |
---|
3271 | * TINV |
---|
3272 | * |
---|
3273 | * Returns the one-tailed probability of the chi-squared distribution. |
---|
3274 | * |
---|
3275 | * @param float $probability Probability for the function |
---|
3276 | * @param float $degrees degrees of freedom |
---|
3277 | * @return float |
---|
3278 | */ |
---|
3279 | public static function TINV($probability, $degrees) { |
---|
3280 | $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
---|
3281 | $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees)); |
---|
3282 | |
---|
3283 | if ((is_numeric($probability)) && (is_numeric($degrees))) { |
---|
3284 | $xLo = 100; |
---|
3285 | $xHi = 0; |
---|
3286 | |
---|
3287 | $x = $xNew = 1; |
---|
3288 | $dx = 1; |
---|
3289 | $i = 0; |
---|
3290 | |
---|
3291 | while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) { |
---|
3292 | // Apply Newton-Raphson step |
---|
3293 | $result = self::TDIST($x, $degrees, 2); |
---|
3294 | $error = $result - $probability; |
---|
3295 | if ($error == 0.0) { |
---|
3296 | $dx = 0; |
---|
3297 | } elseif ($error < 0.0) { |
---|
3298 | $xLo = $x; |
---|
3299 | } else { |
---|
3300 | $xHi = $x; |
---|
3301 | } |
---|
3302 | // Avoid division by zero |
---|
3303 | if ($result != 0.0) { |
---|
3304 | $dx = $error / $result; |
---|
3305 | $xNew = $x - $dx; |
---|
3306 | } |
---|
3307 | // If the NR fails to converge (which for example may be the |
---|
3308 | // case if the initial guess is too rough) we apply a bisection |
---|
3309 | // step to determine a more narrow interval around the root. |
---|
3310 | if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) { |
---|
3311 | $xNew = ($xLo + $xHi) / 2; |
---|
3312 | $dx = $xNew - $x; |
---|
3313 | } |
---|
3314 | $x = $xNew; |
---|
3315 | } |
---|
3316 | if ($i == MAX_ITERATIONS) { |
---|
3317 | return PHPExcel_Calculation_Functions::NA(); |
---|
3318 | } |
---|
3319 | return round($x,12); |
---|
3320 | } |
---|
3321 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
3322 | } // function TINV() |
---|
3323 | |
---|
3324 | |
---|
3325 | /** |
---|
3326 | * TREND |
---|
3327 | * |
---|
3328 | * Returns values along a linear trend |
---|
3329 | * |
---|
3330 | * @param array of mixed Data Series Y |
---|
3331 | * @param array of mixed Data Series X |
---|
3332 | * @param array of mixed Values of X for which we want to find Y |
---|
3333 | * @param boolean A logical value specifying whether to force the intersect to equal 0. |
---|
3334 | * @return array of float |
---|
3335 | */ |
---|
3336 | public static function TREND($yValues,$xValues=array(),$newValues=array(),$const=True) { |
---|
3337 | $yValues = PHPExcel_Calculation_Functions::flattenArray($yValues); |
---|
3338 | $xValues = PHPExcel_Calculation_Functions::flattenArray($xValues); |
---|
3339 | $newValues = PHPExcel_Calculation_Functions::flattenArray($newValues); |
---|
3340 | $const = (is_null($const)) ? True : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const); |
---|
3341 | |
---|
3342 | $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues,$const); |
---|
3343 | if (empty($newValues)) { |
---|
3344 | $newValues = $bestFitLinear->getXValues(); |
---|
3345 | } |
---|
3346 | |
---|
3347 | $returnArray = array(); |
---|
3348 | foreach($newValues as $xValue) { |
---|
3349 | $returnArray[0][] = $bestFitLinear->getValueOfYForX($xValue); |
---|
3350 | } |
---|
3351 | |
---|
3352 | return $returnArray; |
---|
3353 | } // function TREND() |
---|
3354 | |
---|
3355 | |
---|
3356 | /** |
---|
3357 | * TRIMMEAN |
---|
3358 | * |
---|
3359 | * Returns the mean of the interior of a data set. TRIMMEAN calculates the mean |
---|
3360 | * taken by excluding a percentage of data points from the top and bottom tails |
---|
3361 | * of a data set. |
---|
3362 | * |
---|
3363 | * Excel Function: |
---|
3364 | * TRIMEAN(value1[,value2[, ...]],$discard) |
---|
3365 | * |
---|
3366 | * @access public |
---|
3367 | * @category Statistical Functions |
---|
3368 | * @param mixed $arg,... Data values |
---|
3369 | * @param float $discard Percentage to discard |
---|
3370 | * @return float |
---|
3371 | */ |
---|
3372 | public static function TRIMMEAN() { |
---|
3373 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
3374 | |
---|
3375 | // Calculate |
---|
3376 | $percent = array_pop($aArgs); |
---|
3377 | |
---|
3378 | if ((is_numeric($percent)) && (!is_string($percent))) { |
---|
3379 | if (($percent < 0) || ($percent > 1)) { |
---|
3380 | return PHPExcel_Calculation_Functions::NaN(); |
---|
3381 | } |
---|
3382 | $mArgs = array(); |
---|
3383 | foreach ($aArgs as $arg) { |
---|
3384 | // Is it a numeric value? |
---|
3385 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
3386 | $mArgs[] = $arg; |
---|
3387 | } |
---|
3388 | } |
---|
3389 | $discard = floor(self::COUNT($mArgs) * $percent / 2); |
---|
3390 | sort($mArgs); |
---|
3391 | for ($i=0; $i < $discard; ++$i) { |
---|
3392 | array_pop($mArgs); |
---|
3393 | array_shift($mArgs); |
---|
3394 | } |
---|
3395 | return self::AVERAGE($mArgs); |
---|
3396 | } |
---|
3397 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
3398 | } // function TRIMMEAN() |
---|
3399 | |
---|
3400 | |
---|
3401 | /** |
---|
3402 | * VARFunc |
---|
3403 | * |
---|
3404 | * Estimates variance based on a sample. |
---|
3405 | * |
---|
3406 | * Excel Function: |
---|
3407 | * VAR(value1[,value2[, ...]]) |
---|
3408 | * |
---|
3409 | * @access public |
---|
3410 | * @category Statistical Functions |
---|
3411 | * @param mixed $arg,... Data values |
---|
3412 | * @return float |
---|
3413 | */ |
---|
3414 | public static function VARFunc() { |
---|
3415 | // Return value |
---|
3416 | $returnValue = PHPExcel_Calculation_Functions::DIV0(); |
---|
3417 | |
---|
3418 | $summerA = $summerB = 0; |
---|
3419 | |
---|
3420 | // Loop through arguments |
---|
3421 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
3422 | $aCount = 0; |
---|
3423 | foreach ($aArgs as $arg) { |
---|
3424 | if (is_bool($arg)) { $arg = (integer) $arg; } |
---|
3425 | // Is it a numeric value? |
---|
3426 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
3427 | $summerA += ($arg * $arg); |
---|
3428 | $summerB += $arg; |
---|
3429 | ++$aCount; |
---|
3430 | } |
---|
3431 | } |
---|
3432 | |
---|
3433 | // Return |
---|
3434 | if ($aCount > 1) { |
---|
3435 | $summerA *= $aCount; |
---|
3436 | $summerB *= $summerB; |
---|
3437 | $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1)); |
---|
3438 | } |
---|
3439 | return $returnValue; |
---|
3440 | } // function VARFunc() |
---|
3441 | |
---|
3442 | |
---|
3443 | /** |
---|
3444 | * VARA |
---|
3445 | * |
---|
3446 | * Estimates variance based on a sample, including numbers, text, and logical values |
---|
3447 | * |
---|
3448 | * Excel Function: |
---|
3449 | * VARA(value1[,value2[, ...]]) |
---|
3450 | * |
---|
3451 | * @access public |
---|
3452 | * @category Statistical Functions |
---|
3453 | * @param mixed $arg,... Data values |
---|
3454 | * @return float |
---|
3455 | */ |
---|
3456 | public static function VARA() { |
---|
3457 | // Return value |
---|
3458 | $returnValue = PHPExcel_Calculation_Functions::DIV0(); |
---|
3459 | |
---|
3460 | $summerA = $summerB = 0; |
---|
3461 | |
---|
3462 | // Loop through arguments |
---|
3463 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
3464 | $aCount = 0; |
---|
3465 | foreach ($aArgs as $k => $arg) { |
---|
3466 | if ((is_string($arg)) && |
---|
3467 | (PHPExcel_Calculation_Functions::isValue($k))) { |
---|
3468 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
3469 | } elseif ((is_string($arg)) && |
---|
3470 | (!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
---|
3471 | } else { |
---|
3472 | // Is it a numeric value? |
---|
3473 | if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { |
---|
3474 | if (is_bool($arg)) { |
---|
3475 | $arg = (integer) $arg; |
---|
3476 | } elseif (is_string($arg)) { |
---|
3477 | $arg = 0; |
---|
3478 | } |
---|
3479 | $summerA += ($arg * $arg); |
---|
3480 | $summerB += $arg; |
---|
3481 | ++$aCount; |
---|
3482 | } |
---|
3483 | } |
---|
3484 | } |
---|
3485 | |
---|
3486 | // Return |
---|
3487 | if ($aCount > 1) { |
---|
3488 | $summerA *= $aCount; |
---|
3489 | $summerB *= $summerB; |
---|
3490 | $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1)); |
---|
3491 | } |
---|
3492 | return $returnValue; |
---|
3493 | } // function VARA() |
---|
3494 | |
---|
3495 | |
---|
3496 | /** |
---|
3497 | * VARP |
---|
3498 | * |
---|
3499 | * Calculates variance based on the entire population |
---|
3500 | * |
---|
3501 | * Excel Function: |
---|
3502 | * VARP(value1[,value2[, ...]]) |
---|
3503 | * |
---|
3504 | * @access public |
---|
3505 | * @category Statistical Functions |
---|
3506 | * @param mixed $arg,... Data values |
---|
3507 | * @return float |
---|
3508 | */ |
---|
3509 | public static function VARP() { |
---|
3510 | // Return value |
---|
3511 | $returnValue = PHPExcel_Calculation_Functions::DIV0(); |
---|
3512 | |
---|
3513 | $summerA = $summerB = 0; |
---|
3514 | |
---|
3515 | // Loop through arguments |
---|
3516 | $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
---|
3517 | $aCount = 0; |
---|
3518 | foreach ($aArgs as $arg) { |
---|
3519 | if (is_bool($arg)) { $arg = (integer) $arg; } |
---|
3520 | // Is it a numeric value? |
---|
3521 | if ((is_numeric($arg)) && (!is_string($arg))) { |
---|
3522 | $summerA += ($arg * $arg); |
---|
3523 | $summerB += $arg; |
---|
3524 | ++$aCount; |
---|
3525 | } |
---|
3526 | } |
---|
3527 | |
---|
3528 | // Return |
---|
3529 | if ($aCount > 0) { |
---|
3530 | $summerA *= $aCount; |
---|
3531 | $summerB *= $summerB; |
---|
3532 | $returnValue = ($summerA - $summerB) / ($aCount * $aCount); |
---|
3533 | } |
---|
3534 | return $returnValue; |
---|
3535 | } // function VARP() |
---|
3536 | |
---|
3537 | |
---|
3538 | /** |
---|
3539 | * VARPA |
---|
3540 | * |
---|
3541 | * Calculates variance based on the entire population, including numbers, text, and logical values |
---|
3542 | * |
---|
3543 | * Excel Function: |
---|
3544 | * VARPA(value1[,value2[, ...]]) |
---|
3545 | * |
---|
3546 | * @access public |
---|
3547 | * @category Statistical Functions |
---|
3548 | * @param mixed $arg,... Data values |
---|
3549 | * @return float |
---|
3550 | */ |
---|
3551 | public static function VARPA() { |
---|
3552 | // Return value |
---|
3553 | $returnValue = PHPExcel_Calculation_Functions::DIV0(); |
---|
3554 | |
---|
3555 | $summerA = $summerB = 0; |
---|
3556 | |
---|
3557 | // Loop through arguments |
---|
3558 | $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
---|
3559 | $aCount = 0; |
---|
3560 | foreach ($aArgs as $k => $arg) { |
---|
3561 | if ((is_string($arg)) && |
---|
3562 | (PHPExcel_Calculation_Functions::isValue($k))) { |
---|
3563 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
3564 | } elseif ((is_string($arg)) && |
---|
3565 | (!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
---|
3566 | } else { |
---|
3567 | // Is it a numeric value? |
---|
3568 | if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { |
---|
3569 | if (is_bool($arg)) { |
---|
3570 | $arg = (integer) $arg; |
---|
3571 | } elseif (is_string($arg)) { |
---|
3572 | $arg = 0; |
---|
3573 | } |
---|
3574 | $summerA += ($arg * $arg); |
---|
3575 | $summerB += $arg; |
---|
3576 | ++$aCount; |
---|
3577 | } |
---|
3578 | } |
---|
3579 | } |
---|
3580 | |
---|
3581 | // Return |
---|
3582 | if ($aCount > 0) { |
---|
3583 | $summerA *= $aCount; |
---|
3584 | $summerB *= $summerB; |
---|
3585 | $returnValue = ($summerA - $summerB) / ($aCount * $aCount); |
---|
3586 | } |
---|
3587 | return $returnValue; |
---|
3588 | } // function VARPA() |
---|
3589 | |
---|
3590 | |
---|
3591 | /** |
---|
3592 | * WEIBULL |
---|
3593 | * |
---|
3594 | * Returns the Weibull distribution. Use this distribution in reliability |
---|
3595 | * analysis, such as calculating a device's mean time to failure. |
---|
3596 | * |
---|
3597 | * @param float $value |
---|
3598 | * @param float $alpha Alpha Parameter |
---|
3599 | * @param float $beta Beta Parameter |
---|
3600 | * @param boolean $cumulative |
---|
3601 | * @return float |
---|
3602 | * |
---|
3603 | */ |
---|
3604 | public static function WEIBULL($value, $alpha, $beta, $cumulative) { |
---|
3605 | $value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
---|
3606 | $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
---|
3607 | $beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta); |
---|
3608 | |
---|
3609 | if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta))) { |
---|
3610 | if (($value < 0) || ($alpha <= 0) || ($beta <= 0)) { |
---|
3611 | return PHPExcel_Calculation_Functions::NaN(); |
---|
3612 | } |
---|
3613 | if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
---|
3614 | if ($cumulative) { |
---|
3615 | return 1 - exp(0 - pow($value / $beta,$alpha)); |
---|
3616 | } else { |
---|
3617 | return ($alpha / pow($beta,$alpha)) * pow($value,$alpha - 1) * exp(0 - pow($value / $beta,$alpha)); |
---|
3618 | } |
---|
3619 | } |
---|
3620 | } |
---|
3621 | return PHPExcel_Calculation_Functions::VALUE(); |
---|
3622 | } // function WEIBULL() |
---|
3623 | |
---|
3624 | |
---|
3625 | /** |
---|
3626 | * ZTEST |
---|
3627 | * |
---|
3628 | * Returns the Weibull distribution. Use this distribution in reliability |
---|
3629 | * analysis, such as calculating a device's mean time to failure. |
---|
3630 | * |
---|
3631 | * @param float $dataSet |
---|
3632 | * @param float $m0 Alpha Parameter |
---|
3633 | * @param float $sigma Beta Parameter |
---|
3634 | * @param boolean $cumulative |
---|
3635 | * @return float |
---|
3636 | * |
---|
3637 | */ |
---|
3638 | public static function ZTEST($dataSet, $m0, $sigma = NULL) { |
---|
3639 | $dataSet = PHPExcel_Calculation_Functions::flattenArrayIndexed($dataSet); |
---|
3640 | $m0 = PHPExcel_Calculation_Functions::flattenSingleValue($m0); |
---|
3641 | $sigma = PHPExcel_Calculation_Functions::flattenSingleValue($sigma); |
---|
3642 | |
---|
3643 | if (is_null($sigma)) { |
---|
3644 | $sigma = self::STDEV($dataSet); |
---|
3645 | } |
---|
3646 | $n = count($dataSet); |
---|
3647 | |
---|
3648 | return 1 - self::NORMSDIST((self::AVERAGE($dataSet) - $m0)/($sigma/SQRT($n))); |
---|
3649 | } // function ZTEST() |
---|
3650 | |
---|
3651 | } // class PHPExcel_Calculation_Statistical |
---|