[1] | 1 | <?php |
---|
| 2 | /** |
---|
| 3 | * @package JAMA |
---|
| 4 | * |
---|
| 5 | * For an m-by-n matrix A with m >= n, the singular value decomposition is |
---|
| 6 | * an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and |
---|
| 7 | * an n-by-n orthogonal matrix V so that A = U*S*V'. |
---|
| 8 | * |
---|
| 9 | * The singular values, sigma[$k] = S[$k][$k], are ordered so that |
---|
| 10 | * sigma[0] >= sigma[1] >= ... >= sigma[n-1]. |
---|
| 11 | * |
---|
| 12 | * The singular value decompostion always exists, so the constructor will |
---|
| 13 | * never fail. The matrix condition number and the effective numerical |
---|
| 14 | * rank can be computed from this decomposition. |
---|
| 15 | * |
---|
| 16 | * @author Paul Meagher |
---|
| 17 | * @license PHP v3.0 |
---|
| 18 | * @version 1.1 |
---|
| 19 | */ |
---|
| 20 | class SingularValueDecomposition { |
---|
| 21 | |
---|
| 22 | /** |
---|
| 23 | * Internal storage of U. |
---|
| 24 | * @var array |
---|
| 25 | */ |
---|
| 26 | private $U = array(); |
---|
| 27 | |
---|
| 28 | /** |
---|
| 29 | * Internal storage of V. |
---|
| 30 | * @var array |
---|
| 31 | */ |
---|
| 32 | private $V = array(); |
---|
| 33 | |
---|
| 34 | /** |
---|
| 35 | * Internal storage of singular values. |
---|
| 36 | * @var array |
---|
| 37 | */ |
---|
| 38 | private $s = array(); |
---|
| 39 | |
---|
| 40 | /** |
---|
| 41 | * Row dimension. |
---|
| 42 | * @var int |
---|
| 43 | */ |
---|
| 44 | private $m; |
---|
| 45 | |
---|
| 46 | /** |
---|
| 47 | * Column dimension. |
---|
| 48 | * @var int |
---|
| 49 | */ |
---|
| 50 | private $n; |
---|
| 51 | |
---|
| 52 | |
---|
| 53 | /** |
---|
| 54 | * Construct the singular value decomposition |
---|
| 55 | * |
---|
| 56 | * Derived from LINPACK code. |
---|
| 57 | * |
---|
| 58 | * @param $A Rectangular matrix |
---|
| 59 | * @return Structure to access U, S and V. |
---|
| 60 | */ |
---|
| 61 | public function __construct($Arg) { |
---|
| 62 | |
---|
| 63 | // Initialize. |
---|
| 64 | $A = $Arg->getArrayCopy(); |
---|
| 65 | $this->m = $Arg->getRowDimension(); |
---|
| 66 | $this->n = $Arg->getColumnDimension(); |
---|
| 67 | $nu = min($this->m, $this->n); |
---|
| 68 | $e = array(); |
---|
| 69 | $work = array(); |
---|
| 70 | $wantu = true; |
---|
| 71 | $wantv = true; |
---|
| 72 | $nct = min($this->m - 1, $this->n); |
---|
| 73 | $nrt = max(0, min($this->n - 2, $this->m)); |
---|
| 74 | |
---|
| 75 | // Reduce A to bidiagonal form, storing the diagonal elements |
---|
| 76 | // in s and the super-diagonal elements in e. |
---|
| 77 | for ($k = 0; $k < max($nct,$nrt); ++$k) { |
---|
| 78 | |
---|
| 79 | if ($k < $nct) { |
---|
| 80 | // Compute the transformation for the k-th column and |
---|
| 81 | // place the k-th diagonal in s[$k]. |
---|
| 82 | // Compute 2-norm of k-th column without under/overflow. |
---|
| 83 | $this->s[$k] = 0; |
---|
| 84 | for ($i = $k; $i < $this->m; ++$i) { |
---|
| 85 | $this->s[$k] = hypo($this->s[$k], $A[$i][$k]); |
---|
| 86 | } |
---|
| 87 | if ($this->s[$k] != 0.0) { |
---|
| 88 | if ($A[$k][$k] < 0.0) { |
---|
| 89 | $this->s[$k] = -$this->s[$k]; |
---|
| 90 | } |
---|
| 91 | for ($i = $k; $i < $this->m; ++$i) { |
---|
| 92 | $A[$i][$k] /= $this->s[$k]; |
---|
| 93 | } |
---|
| 94 | $A[$k][$k] += 1.0; |
---|
| 95 | } |
---|
| 96 | $this->s[$k] = -$this->s[$k]; |
---|
| 97 | } |
---|
| 98 | |
---|
| 99 | for ($j = $k + 1; $j < $this->n; ++$j) { |
---|
| 100 | if (($k < $nct) & ($this->s[$k] != 0.0)) { |
---|
| 101 | // Apply the transformation. |
---|
| 102 | $t = 0; |
---|
| 103 | for ($i = $k; $i < $this->m; ++$i) { |
---|
| 104 | $t += $A[$i][$k] * $A[$i][$j]; |
---|
| 105 | } |
---|
| 106 | $t = -$t / $A[$k][$k]; |
---|
| 107 | for ($i = $k; $i < $this->m; ++$i) { |
---|
| 108 | $A[$i][$j] += $t * $A[$i][$k]; |
---|
| 109 | } |
---|
| 110 | // Place the k-th row of A into e for the |
---|
| 111 | // subsequent calculation of the row transformation. |
---|
| 112 | $e[$j] = $A[$k][$j]; |
---|
| 113 | } |
---|
| 114 | } |
---|
| 115 | |
---|
| 116 | if ($wantu AND ($k < $nct)) { |
---|
| 117 | // Place the transformation in U for subsequent back |
---|
| 118 | // multiplication. |
---|
| 119 | for ($i = $k; $i < $this->m; ++$i) { |
---|
| 120 | $this->U[$i][$k] = $A[$i][$k]; |
---|
| 121 | } |
---|
| 122 | } |
---|
| 123 | |
---|
| 124 | if ($k < $nrt) { |
---|
| 125 | // Compute the k-th row transformation and place the |
---|
| 126 | // k-th super-diagonal in e[$k]. |
---|
| 127 | // Compute 2-norm without under/overflow. |
---|
| 128 | $e[$k] = 0; |
---|
| 129 | for ($i = $k + 1; $i < $this->n; ++$i) { |
---|
| 130 | $e[$k] = hypo($e[$k], $e[$i]); |
---|
| 131 | } |
---|
| 132 | if ($e[$k] != 0.0) { |
---|
| 133 | if ($e[$k+1] < 0.0) { |
---|
| 134 | $e[$k] = -$e[$k]; |
---|
| 135 | } |
---|
| 136 | for ($i = $k + 1; $i < $this->n; ++$i) { |
---|
| 137 | $e[$i] /= $e[$k]; |
---|
| 138 | } |
---|
| 139 | $e[$k+1] += 1.0; |
---|
| 140 | } |
---|
| 141 | $e[$k] = -$e[$k]; |
---|
| 142 | if (($k+1 < $this->m) AND ($e[$k] != 0.0)) { |
---|
| 143 | // Apply the transformation. |
---|
| 144 | for ($i = $k+1; $i < $this->m; ++$i) { |
---|
| 145 | $work[$i] = 0.0; |
---|
| 146 | } |
---|
| 147 | for ($j = $k+1; $j < $this->n; ++$j) { |
---|
| 148 | for ($i = $k+1; $i < $this->m; ++$i) { |
---|
| 149 | $work[$i] += $e[$j] * $A[$i][$j]; |
---|
| 150 | } |
---|
| 151 | } |
---|
| 152 | for ($j = $k + 1; $j < $this->n; ++$j) { |
---|
| 153 | $t = -$e[$j] / $e[$k+1]; |
---|
| 154 | for ($i = $k + 1; $i < $this->m; ++$i) { |
---|
| 155 | $A[$i][$j] += $t * $work[$i]; |
---|
| 156 | } |
---|
| 157 | } |
---|
| 158 | } |
---|
| 159 | if ($wantv) { |
---|
| 160 | // Place the transformation in V for subsequent |
---|
| 161 | // back multiplication. |
---|
| 162 | for ($i = $k + 1; $i < $this->n; ++$i) { |
---|
| 163 | $this->V[$i][$k] = $e[$i]; |
---|
| 164 | } |
---|
| 165 | } |
---|
| 166 | } |
---|
| 167 | } |
---|
| 168 | |
---|
| 169 | // Set up the final bidiagonal matrix or order p. |
---|
| 170 | $p = min($this->n, $this->m + 1); |
---|
| 171 | if ($nct < $this->n) { |
---|
| 172 | $this->s[$nct] = $A[$nct][$nct]; |
---|
| 173 | } |
---|
| 174 | if ($this->m < $p) { |
---|
| 175 | $this->s[$p-1] = 0.0; |
---|
| 176 | } |
---|
| 177 | if ($nrt + 1 < $p) { |
---|
| 178 | $e[$nrt] = $A[$nrt][$p-1]; |
---|
| 179 | } |
---|
| 180 | $e[$p-1] = 0.0; |
---|
| 181 | // If required, generate U. |
---|
| 182 | if ($wantu) { |
---|
| 183 | for ($j = $nct; $j < $nu; ++$j) { |
---|
| 184 | for ($i = 0; $i < $this->m; ++$i) { |
---|
| 185 | $this->U[$i][$j] = 0.0; |
---|
| 186 | } |
---|
| 187 | $this->U[$j][$j] = 1.0; |
---|
| 188 | } |
---|
| 189 | for ($k = $nct - 1; $k >= 0; --$k) { |
---|
| 190 | if ($this->s[$k] != 0.0) { |
---|
| 191 | for ($j = $k + 1; $j < $nu; ++$j) { |
---|
| 192 | $t = 0; |
---|
| 193 | for ($i = $k; $i < $this->m; ++$i) { |
---|
| 194 | $t += $this->U[$i][$k] * $this->U[$i][$j]; |
---|
| 195 | } |
---|
| 196 | $t = -$t / $this->U[$k][$k]; |
---|
| 197 | for ($i = $k; $i < $this->m; ++$i) { |
---|
| 198 | $this->U[$i][$j] += $t * $this->U[$i][$k]; |
---|
| 199 | } |
---|
| 200 | } |
---|
| 201 | for ($i = $k; $i < $this->m; ++$i ) { |
---|
| 202 | $this->U[$i][$k] = -$this->U[$i][$k]; |
---|
| 203 | } |
---|
| 204 | $this->U[$k][$k] = 1.0 + $this->U[$k][$k]; |
---|
| 205 | for ($i = 0; $i < $k - 1; ++$i) { |
---|
| 206 | $this->U[$i][$k] = 0.0; |
---|
| 207 | } |
---|
| 208 | } else { |
---|
| 209 | for ($i = 0; $i < $this->m; ++$i) { |
---|
| 210 | $this->U[$i][$k] = 0.0; |
---|
| 211 | } |
---|
| 212 | $this->U[$k][$k] = 1.0; |
---|
| 213 | } |
---|
| 214 | } |
---|
| 215 | } |
---|
| 216 | |
---|
| 217 | // If required, generate V. |
---|
| 218 | if ($wantv) { |
---|
| 219 | for ($k = $this->n - 1; $k >= 0; --$k) { |
---|
| 220 | if (($k < $nrt) AND ($e[$k] != 0.0)) { |
---|
| 221 | for ($j = $k + 1; $j < $nu; ++$j) { |
---|
| 222 | $t = 0; |
---|
| 223 | for ($i = $k + 1; $i < $this->n; ++$i) { |
---|
| 224 | $t += $this->V[$i][$k]* $this->V[$i][$j]; |
---|
| 225 | } |
---|
| 226 | $t = -$t / $this->V[$k+1][$k]; |
---|
| 227 | for ($i = $k + 1; $i < $this->n; ++$i) { |
---|
| 228 | $this->V[$i][$j] += $t * $this->V[$i][$k]; |
---|
| 229 | } |
---|
| 230 | } |
---|
| 231 | } |
---|
| 232 | for ($i = 0; $i < $this->n; ++$i) { |
---|
| 233 | $this->V[$i][$k] = 0.0; |
---|
| 234 | } |
---|
| 235 | $this->V[$k][$k] = 1.0; |
---|
| 236 | } |
---|
| 237 | } |
---|
| 238 | |
---|
| 239 | // Main iteration loop for the singular values. |
---|
| 240 | $pp = $p - 1; |
---|
| 241 | $iter = 0; |
---|
| 242 | $eps = pow(2.0, -52.0); |
---|
| 243 | |
---|
| 244 | while ($p > 0) { |
---|
| 245 | // Here is where a test for too many iterations would go. |
---|
| 246 | // This section of the program inspects for negligible |
---|
| 247 | // elements in the s and e arrays. On completion the |
---|
| 248 | // variables kase and k are set as follows: |
---|
| 249 | // kase = 1 if s(p) and e[k-1] are negligible and k<p |
---|
| 250 | // kase = 2 if s(k) is negligible and k<p |
---|
| 251 | // kase = 3 if e[k-1] is negligible, k<p, and |
---|
| 252 | // s(k), ..., s(p) are not negligible (qr step). |
---|
| 253 | // kase = 4 if e(p-1) is negligible (convergence). |
---|
| 254 | for ($k = $p - 2; $k >= -1; --$k) { |
---|
| 255 | if ($k == -1) { |
---|
| 256 | break; |
---|
| 257 | } |
---|
| 258 | if (abs($e[$k]) <= $eps * (abs($this->s[$k]) + abs($this->s[$k+1]))) { |
---|
| 259 | $e[$k] = 0.0; |
---|
| 260 | break; |
---|
| 261 | } |
---|
| 262 | } |
---|
| 263 | if ($k == $p - 2) { |
---|
| 264 | $kase = 4; |
---|
| 265 | } else { |
---|
| 266 | for ($ks = $p - 1; $ks >= $k; --$ks) { |
---|
| 267 | if ($ks == $k) { |
---|
| 268 | break; |
---|
| 269 | } |
---|
| 270 | $t = ($ks != $p ? abs($e[$ks]) : 0.) + ($ks != $k + 1 ? abs($e[$ks-1]) : 0.); |
---|
| 271 | if (abs($this->s[$ks]) <= $eps * $t) { |
---|
| 272 | $this->s[$ks] = 0.0; |
---|
| 273 | break; |
---|
| 274 | } |
---|
| 275 | } |
---|
| 276 | if ($ks == $k) { |
---|
| 277 | $kase = 3; |
---|
| 278 | } else if ($ks == $p-1) { |
---|
| 279 | $kase = 1; |
---|
| 280 | } else { |
---|
| 281 | $kase = 2; |
---|
| 282 | $k = $ks; |
---|
| 283 | } |
---|
| 284 | } |
---|
| 285 | ++$k; |
---|
| 286 | |
---|
| 287 | // Perform the task indicated by kase. |
---|
| 288 | switch ($kase) { |
---|
| 289 | // Deflate negligible s(p). |
---|
| 290 | case 1: |
---|
| 291 | $f = $e[$p-2]; |
---|
| 292 | $e[$p-2] = 0.0; |
---|
| 293 | for ($j = $p - 2; $j >= $k; --$j) { |
---|
| 294 | $t = hypo($this->s[$j],$f); |
---|
| 295 | $cs = $this->s[$j] / $t; |
---|
| 296 | $sn = $f / $t; |
---|
| 297 | $this->s[$j] = $t; |
---|
| 298 | if ($j != $k) { |
---|
| 299 | $f = -$sn * $e[$j-1]; |
---|
| 300 | $e[$j-1] = $cs * $e[$j-1]; |
---|
| 301 | } |
---|
| 302 | if ($wantv) { |
---|
| 303 | for ($i = 0; $i < $this->n; ++$i) { |
---|
| 304 | $t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$p-1]; |
---|
| 305 | $this->V[$i][$p-1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$p-1]; |
---|
| 306 | $this->V[$i][$j] = $t; |
---|
| 307 | } |
---|
| 308 | } |
---|
| 309 | } |
---|
| 310 | break; |
---|
| 311 | // Split at negligible s(k). |
---|
| 312 | case 2: |
---|
| 313 | $f = $e[$k-1]; |
---|
| 314 | $e[$k-1] = 0.0; |
---|
| 315 | for ($j = $k; $j < $p; ++$j) { |
---|
| 316 | $t = hypo($this->s[$j], $f); |
---|
| 317 | $cs = $this->s[$j] / $t; |
---|
| 318 | $sn = $f / $t; |
---|
| 319 | $this->s[$j] = $t; |
---|
| 320 | $f = -$sn * $e[$j]; |
---|
| 321 | $e[$j] = $cs * $e[$j]; |
---|
| 322 | if ($wantu) { |
---|
| 323 | for ($i = 0; $i < $this->m; ++$i) { |
---|
| 324 | $t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$k-1]; |
---|
| 325 | $this->U[$i][$k-1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$k-1]; |
---|
| 326 | $this->U[$i][$j] = $t; |
---|
| 327 | } |
---|
| 328 | } |
---|
| 329 | } |
---|
| 330 | break; |
---|
| 331 | // Perform one qr step. |
---|
| 332 | case 3: |
---|
| 333 | // Calculate the shift. |
---|
| 334 | $scale = max(max(max(max( |
---|
| 335 | abs($this->s[$p-1]),abs($this->s[$p-2])),abs($e[$p-2])), |
---|
| 336 | abs($this->s[$k])), abs($e[$k])); |
---|
| 337 | $sp = $this->s[$p-1] / $scale; |
---|
| 338 | $spm1 = $this->s[$p-2] / $scale; |
---|
| 339 | $epm1 = $e[$p-2] / $scale; |
---|
| 340 | $sk = $this->s[$k] / $scale; |
---|
| 341 | $ek = $e[$k] / $scale; |
---|
| 342 | $b = (($spm1 + $sp) * ($spm1 - $sp) + $epm1 * $epm1) / 2.0; |
---|
| 343 | $c = ($sp * $epm1) * ($sp * $epm1); |
---|
| 344 | $shift = 0.0; |
---|
| 345 | if (($b != 0.0) || ($c != 0.0)) { |
---|
| 346 | $shift = sqrt($b * $b + $c); |
---|
| 347 | if ($b < 0.0) { |
---|
| 348 | $shift = -$shift; |
---|
| 349 | } |
---|
| 350 | $shift = $c / ($b + $shift); |
---|
| 351 | } |
---|
| 352 | $f = ($sk + $sp) * ($sk - $sp) + $shift; |
---|
| 353 | $g = $sk * $ek; |
---|
| 354 | // Chase zeros. |
---|
| 355 | for ($j = $k; $j < $p-1; ++$j) { |
---|
| 356 | $t = hypo($f,$g); |
---|
| 357 | $cs = $f/$t; |
---|
| 358 | $sn = $g/$t; |
---|
| 359 | if ($j != $k) { |
---|
| 360 | $e[$j-1] = $t; |
---|
| 361 | } |
---|
| 362 | $f = $cs * $this->s[$j] + $sn * $e[$j]; |
---|
| 363 | $e[$j] = $cs * $e[$j] - $sn * $this->s[$j]; |
---|
| 364 | $g = $sn * $this->s[$j+1]; |
---|
| 365 | $this->s[$j+1] = $cs * $this->s[$j+1]; |
---|
| 366 | if ($wantv) { |
---|
| 367 | for ($i = 0; $i < $this->n; ++$i) { |
---|
| 368 | $t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$j+1]; |
---|
| 369 | $this->V[$i][$j+1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$j+1]; |
---|
| 370 | $this->V[$i][$j] = $t; |
---|
| 371 | } |
---|
| 372 | } |
---|
| 373 | $t = hypo($f,$g); |
---|
| 374 | $cs = $f/$t; |
---|
| 375 | $sn = $g/$t; |
---|
| 376 | $this->s[$j] = $t; |
---|
| 377 | $f = $cs * $e[$j] + $sn * $this->s[$j+1]; |
---|
| 378 | $this->s[$j+1] = -$sn * $e[$j] + $cs * $this->s[$j+1]; |
---|
| 379 | $g = $sn * $e[$j+1]; |
---|
| 380 | $e[$j+1] = $cs * $e[$j+1]; |
---|
| 381 | if ($wantu && ($j < $this->m - 1)) { |
---|
| 382 | for ($i = 0; $i < $this->m; ++$i) { |
---|
| 383 | $t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$j+1]; |
---|
| 384 | $this->U[$i][$j+1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$j+1]; |
---|
| 385 | $this->U[$i][$j] = $t; |
---|
| 386 | } |
---|
| 387 | } |
---|
| 388 | } |
---|
| 389 | $e[$p-2] = $f; |
---|
| 390 | $iter = $iter + 1; |
---|
| 391 | break; |
---|
| 392 | // Convergence. |
---|
| 393 | case 4: |
---|
| 394 | // Make the singular values positive. |
---|
| 395 | if ($this->s[$k] <= 0.0) { |
---|
| 396 | $this->s[$k] = ($this->s[$k] < 0.0 ? -$this->s[$k] : 0.0); |
---|
| 397 | if ($wantv) { |
---|
| 398 | for ($i = 0; $i <= $pp; ++$i) { |
---|
| 399 | $this->V[$i][$k] = -$this->V[$i][$k]; |
---|
| 400 | } |
---|
| 401 | } |
---|
| 402 | } |
---|
| 403 | // Order the singular values. |
---|
| 404 | while ($k < $pp) { |
---|
| 405 | if ($this->s[$k] >= $this->s[$k+1]) { |
---|
| 406 | break; |
---|
| 407 | } |
---|
| 408 | $t = $this->s[$k]; |
---|
| 409 | $this->s[$k] = $this->s[$k+1]; |
---|
| 410 | $this->s[$k+1] = $t; |
---|
| 411 | if ($wantv AND ($k < $this->n - 1)) { |
---|
| 412 | for ($i = 0; $i < $this->n; ++$i) { |
---|
| 413 | $t = $this->V[$i][$k+1]; |
---|
| 414 | $this->V[$i][$k+1] = $this->V[$i][$k]; |
---|
| 415 | $this->V[$i][$k] = $t; |
---|
| 416 | } |
---|
| 417 | } |
---|
| 418 | if ($wantu AND ($k < $this->m-1)) { |
---|
| 419 | for ($i = 0; $i < $this->m; ++$i) { |
---|
| 420 | $t = $this->U[$i][$k+1]; |
---|
| 421 | $this->U[$i][$k+1] = $this->U[$i][$k]; |
---|
| 422 | $this->U[$i][$k] = $t; |
---|
| 423 | } |
---|
| 424 | } |
---|
| 425 | ++$k; |
---|
| 426 | } |
---|
| 427 | $iter = 0; |
---|
| 428 | --$p; |
---|
| 429 | break; |
---|
| 430 | } // end switch |
---|
| 431 | } // end while |
---|
| 432 | |
---|
| 433 | } // end constructor |
---|
| 434 | |
---|
| 435 | |
---|
| 436 | /** |
---|
| 437 | * Return the left singular vectors |
---|
| 438 | * |
---|
| 439 | * @access public |
---|
| 440 | * @return U |
---|
| 441 | */ |
---|
| 442 | public function getU() { |
---|
| 443 | return new Matrix($this->U, $this->m, min($this->m + 1, $this->n)); |
---|
| 444 | } |
---|
| 445 | |
---|
| 446 | |
---|
| 447 | /** |
---|
| 448 | * Return the right singular vectors |
---|
| 449 | * |
---|
| 450 | * @access public |
---|
| 451 | * @return V |
---|
| 452 | */ |
---|
| 453 | public function getV() { |
---|
| 454 | return new Matrix($this->V); |
---|
| 455 | } |
---|
| 456 | |
---|
| 457 | |
---|
| 458 | /** |
---|
| 459 | * Return the one-dimensional array of singular values |
---|
| 460 | * |
---|
| 461 | * @access public |
---|
| 462 | * @return diagonal of S. |
---|
| 463 | */ |
---|
| 464 | public function getSingularValues() { |
---|
| 465 | return $this->s; |
---|
| 466 | } |
---|
| 467 | |
---|
| 468 | |
---|
| 469 | /** |
---|
| 470 | * Return the diagonal matrix of singular values |
---|
| 471 | * |
---|
| 472 | * @access public |
---|
| 473 | * @return S |
---|
| 474 | */ |
---|
| 475 | public function getS() { |
---|
| 476 | for ($i = 0; $i < $this->n; ++$i) { |
---|
| 477 | for ($j = 0; $j < $this->n; ++$j) { |
---|
| 478 | $S[$i][$j] = 0.0; |
---|
| 479 | } |
---|
| 480 | $S[$i][$i] = $this->s[$i]; |
---|
| 481 | } |
---|
| 482 | return new Matrix($S); |
---|
| 483 | } |
---|
| 484 | |
---|
| 485 | |
---|
| 486 | /** |
---|
| 487 | * Two norm |
---|
| 488 | * |
---|
| 489 | * @access public |
---|
| 490 | * @return max(S) |
---|
| 491 | */ |
---|
| 492 | public function norm2() { |
---|
| 493 | return $this->s[0]; |
---|
| 494 | } |
---|
| 495 | |
---|
| 496 | |
---|
| 497 | /** |
---|
| 498 | * Two norm condition number |
---|
| 499 | * |
---|
| 500 | * @access public |
---|
| 501 | * @return max(S)/min(S) |
---|
| 502 | */ |
---|
| 503 | public function cond() { |
---|
| 504 | return $this->s[0] / $this->s[min($this->m, $this->n) - 1]; |
---|
| 505 | } |
---|
| 506 | |
---|
| 507 | |
---|
| 508 | /** |
---|
| 509 | * Effective numerical matrix rank |
---|
| 510 | * |
---|
| 511 | * @access public |
---|
| 512 | * @return Number of nonnegligible singular values. |
---|
| 513 | */ |
---|
| 514 | public function rank() { |
---|
| 515 | $eps = pow(2.0, -52.0); |
---|
| 516 | $tol = max($this->m, $this->n) * $this->s[0] * $eps; |
---|
| 517 | $r = 0; |
---|
| 518 | for ($i = 0; $i < count($this->s); ++$i) { |
---|
| 519 | if ($this->s[$i] > $tol) { |
---|
| 520 | ++$r; |
---|
| 521 | } |
---|
| 522 | } |
---|
| 523 | return $r; |
---|
| 524 | } |
---|
| 525 | |
---|
| 526 | } // class SingularValueDecomposition |
---|