1 | <?php |
---|
2 | /** |
---|
3 | * PHPExcel |
---|
4 | * |
---|
5 | * Copyright (c) 2006 - 2014 PHPExcel |
---|
6 | * |
---|
7 | * This library is free software; you can redistribute it and/or |
---|
8 | * modify it under the terms of the GNU Lesser General Public |
---|
9 | * License as published by the Free Software Foundation; either |
---|
10 | * version 2.1 of the License, or (at your option) any later version. |
---|
11 | * |
---|
12 | * This library is distributed in the hope that it will be useful, |
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
15 | * Lesser General Public License for more details. |
---|
16 | * |
---|
17 | * You should have received a copy of the GNU Lesser General Public |
---|
18 | * License along with this library; if not, write to the Free Software |
---|
19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
---|
20 | * |
---|
21 | * @category PHPExcel |
---|
22 | * @package PHPExcel_Shared_Trend |
---|
23 | * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel) |
---|
24 | * @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL |
---|
25 | * @version 1.8.0, 2014-03-02 |
---|
26 | */ |
---|
27 | |
---|
28 | |
---|
29 | /** |
---|
30 | * PHPExcel_Best_Fit |
---|
31 | * |
---|
32 | * @category PHPExcel |
---|
33 | * @package PHPExcel_Shared_Trend |
---|
34 | * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel) |
---|
35 | */ |
---|
36 | class PHPExcel_Best_Fit |
---|
37 | { |
---|
38 | /** |
---|
39 | * Indicator flag for a calculation error |
---|
40 | * |
---|
41 | * @var boolean |
---|
42 | **/ |
---|
43 | protected $_error = False; |
---|
44 | |
---|
45 | /** |
---|
46 | * Algorithm type to use for best-fit |
---|
47 | * |
---|
48 | * @var string |
---|
49 | **/ |
---|
50 | protected $_bestFitType = 'undetermined'; |
---|
51 | |
---|
52 | /** |
---|
53 | * Number of entries in the sets of x- and y-value arrays |
---|
54 | * |
---|
55 | * @var int |
---|
56 | **/ |
---|
57 | protected $_valueCount = 0; |
---|
58 | |
---|
59 | /** |
---|
60 | * X-value dataseries of values |
---|
61 | * |
---|
62 | * @var float[] |
---|
63 | **/ |
---|
64 | protected $_xValues = array(); |
---|
65 | |
---|
66 | /** |
---|
67 | * Y-value dataseries of values |
---|
68 | * |
---|
69 | * @var float[] |
---|
70 | **/ |
---|
71 | protected $_yValues = array(); |
---|
72 | |
---|
73 | /** |
---|
74 | * Flag indicating whether values should be adjusted to Y=0 |
---|
75 | * |
---|
76 | * @var boolean |
---|
77 | **/ |
---|
78 | protected $_adjustToZero = False; |
---|
79 | |
---|
80 | /** |
---|
81 | * Y-value series of best-fit values |
---|
82 | * |
---|
83 | * @var float[] |
---|
84 | **/ |
---|
85 | protected $_yBestFitValues = array(); |
---|
86 | |
---|
87 | protected $_goodnessOfFit = 1; |
---|
88 | |
---|
89 | protected $_stdevOfResiduals = 0; |
---|
90 | |
---|
91 | protected $_covariance = 0; |
---|
92 | |
---|
93 | protected $_correlation = 0; |
---|
94 | |
---|
95 | protected $_SSRegression = 0; |
---|
96 | |
---|
97 | protected $_SSResiduals = 0; |
---|
98 | |
---|
99 | protected $_DFResiduals = 0; |
---|
100 | |
---|
101 | protected $_F = 0; |
---|
102 | |
---|
103 | protected $_slope = 0; |
---|
104 | |
---|
105 | protected $_slopeSE = 0; |
---|
106 | |
---|
107 | protected $_intersect = 0; |
---|
108 | |
---|
109 | protected $_intersectSE = 0; |
---|
110 | |
---|
111 | protected $_Xoffset = 0; |
---|
112 | |
---|
113 | protected $_Yoffset = 0; |
---|
114 | |
---|
115 | |
---|
116 | public function getError() { |
---|
117 | return $this->_error; |
---|
118 | } // function getBestFitType() |
---|
119 | |
---|
120 | |
---|
121 | public function getBestFitType() { |
---|
122 | return $this->_bestFitType; |
---|
123 | } // function getBestFitType() |
---|
124 | |
---|
125 | |
---|
126 | /** |
---|
127 | * Return the Y-Value for a specified value of X |
---|
128 | * |
---|
129 | * @param float $xValue X-Value |
---|
130 | * @return float Y-Value |
---|
131 | */ |
---|
132 | public function getValueOfYForX($xValue) { |
---|
133 | return False; |
---|
134 | } // function getValueOfYForX() |
---|
135 | |
---|
136 | |
---|
137 | /** |
---|
138 | * Return the X-Value for a specified value of Y |
---|
139 | * |
---|
140 | * @param float $yValue Y-Value |
---|
141 | * @return float X-Value |
---|
142 | */ |
---|
143 | public function getValueOfXForY($yValue) { |
---|
144 | return False; |
---|
145 | } // function getValueOfXForY() |
---|
146 | |
---|
147 | |
---|
148 | /** |
---|
149 | * Return the original set of X-Values |
---|
150 | * |
---|
151 | * @return float[] X-Values |
---|
152 | */ |
---|
153 | public function getXValues() { |
---|
154 | return $this->_xValues; |
---|
155 | } // function getValueOfXForY() |
---|
156 | |
---|
157 | |
---|
158 | /** |
---|
159 | * Return the Equation of the best-fit line |
---|
160 | * |
---|
161 | * @param int $dp Number of places of decimal precision to display |
---|
162 | * @return string |
---|
163 | */ |
---|
164 | public function getEquation($dp=0) { |
---|
165 | return False; |
---|
166 | } // function getEquation() |
---|
167 | |
---|
168 | |
---|
169 | /** |
---|
170 | * Return the Slope of the line |
---|
171 | * |
---|
172 | * @param int $dp Number of places of decimal precision to display |
---|
173 | * @return string |
---|
174 | */ |
---|
175 | public function getSlope($dp=0) { |
---|
176 | if ($dp != 0) { |
---|
177 | return round($this->_slope,$dp); |
---|
178 | } |
---|
179 | return $this->_slope; |
---|
180 | } // function getSlope() |
---|
181 | |
---|
182 | |
---|
183 | /** |
---|
184 | * Return the standard error of the Slope |
---|
185 | * |
---|
186 | * @param int $dp Number of places of decimal precision to display |
---|
187 | * @return string |
---|
188 | */ |
---|
189 | public function getSlopeSE($dp=0) { |
---|
190 | if ($dp != 0) { |
---|
191 | return round($this->_slopeSE,$dp); |
---|
192 | } |
---|
193 | return $this->_slopeSE; |
---|
194 | } // function getSlopeSE() |
---|
195 | |
---|
196 | |
---|
197 | /** |
---|
198 | * Return the Value of X where it intersects Y = 0 |
---|
199 | * |
---|
200 | * @param int $dp Number of places of decimal precision to display |
---|
201 | * @return string |
---|
202 | */ |
---|
203 | public function getIntersect($dp=0) { |
---|
204 | if ($dp != 0) { |
---|
205 | return round($this->_intersect,$dp); |
---|
206 | } |
---|
207 | return $this->_intersect; |
---|
208 | } // function getIntersect() |
---|
209 | |
---|
210 | |
---|
211 | /** |
---|
212 | * Return the standard error of the Intersect |
---|
213 | * |
---|
214 | * @param int $dp Number of places of decimal precision to display |
---|
215 | * @return string |
---|
216 | */ |
---|
217 | public function getIntersectSE($dp=0) { |
---|
218 | if ($dp != 0) { |
---|
219 | return round($this->_intersectSE,$dp); |
---|
220 | } |
---|
221 | return $this->_intersectSE; |
---|
222 | } // function getIntersectSE() |
---|
223 | |
---|
224 | |
---|
225 | /** |
---|
226 | * Return the goodness of fit for this regression |
---|
227 | * |
---|
228 | * @param int $dp Number of places of decimal precision to return |
---|
229 | * @return float |
---|
230 | */ |
---|
231 | public function getGoodnessOfFit($dp=0) { |
---|
232 | if ($dp != 0) { |
---|
233 | return round($this->_goodnessOfFit,$dp); |
---|
234 | } |
---|
235 | return $this->_goodnessOfFit; |
---|
236 | } // function getGoodnessOfFit() |
---|
237 | |
---|
238 | |
---|
239 | public function getGoodnessOfFitPercent($dp=0) { |
---|
240 | if ($dp != 0) { |
---|
241 | return round($this->_goodnessOfFit * 100,$dp); |
---|
242 | } |
---|
243 | return $this->_goodnessOfFit * 100; |
---|
244 | } // function getGoodnessOfFitPercent() |
---|
245 | |
---|
246 | |
---|
247 | /** |
---|
248 | * Return the standard deviation of the residuals for this regression |
---|
249 | * |
---|
250 | * @param int $dp Number of places of decimal precision to return |
---|
251 | * @return float |
---|
252 | */ |
---|
253 | public function getStdevOfResiduals($dp=0) { |
---|
254 | if ($dp != 0) { |
---|
255 | return round($this->_stdevOfResiduals,$dp); |
---|
256 | } |
---|
257 | return $this->_stdevOfResiduals; |
---|
258 | } // function getStdevOfResiduals() |
---|
259 | |
---|
260 | |
---|
261 | public function getSSRegression($dp=0) { |
---|
262 | if ($dp != 0) { |
---|
263 | return round($this->_SSRegression,$dp); |
---|
264 | } |
---|
265 | return $this->_SSRegression; |
---|
266 | } // function getSSRegression() |
---|
267 | |
---|
268 | |
---|
269 | public function getSSResiduals($dp=0) { |
---|
270 | if ($dp != 0) { |
---|
271 | return round($this->_SSResiduals,$dp); |
---|
272 | } |
---|
273 | return $this->_SSResiduals; |
---|
274 | } // function getSSResiduals() |
---|
275 | |
---|
276 | |
---|
277 | public function getDFResiduals($dp=0) { |
---|
278 | if ($dp != 0) { |
---|
279 | return round($this->_DFResiduals,$dp); |
---|
280 | } |
---|
281 | return $this->_DFResiduals; |
---|
282 | } // function getDFResiduals() |
---|
283 | |
---|
284 | |
---|
285 | public function getF($dp=0) { |
---|
286 | if ($dp != 0) { |
---|
287 | return round($this->_F,$dp); |
---|
288 | } |
---|
289 | return $this->_F; |
---|
290 | } // function getF() |
---|
291 | |
---|
292 | |
---|
293 | public function getCovariance($dp=0) { |
---|
294 | if ($dp != 0) { |
---|
295 | return round($this->_covariance,$dp); |
---|
296 | } |
---|
297 | return $this->_covariance; |
---|
298 | } // function getCovariance() |
---|
299 | |
---|
300 | |
---|
301 | public function getCorrelation($dp=0) { |
---|
302 | if ($dp != 0) { |
---|
303 | return round($this->_correlation,$dp); |
---|
304 | } |
---|
305 | return $this->_correlation; |
---|
306 | } // function getCorrelation() |
---|
307 | |
---|
308 | |
---|
309 | public function getYBestFitValues() { |
---|
310 | return $this->_yBestFitValues; |
---|
311 | } // function getYBestFitValues() |
---|
312 | |
---|
313 | |
---|
314 | protected function _calculateGoodnessOfFit($sumX,$sumY,$sumX2,$sumY2,$sumXY,$meanX,$meanY, $const) { |
---|
315 | $SSres = $SScov = $SScor = $SStot = $SSsex = 0.0; |
---|
316 | foreach($this->_xValues as $xKey => $xValue) { |
---|
317 | $bestFitY = $this->_yBestFitValues[$xKey] = $this->getValueOfYForX($xValue); |
---|
318 | |
---|
319 | $SSres += ($this->_yValues[$xKey] - $bestFitY) * ($this->_yValues[$xKey] - $bestFitY); |
---|
320 | if ($const) { |
---|
321 | $SStot += ($this->_yValues[$xKey] - $meanY) * ($this->_yValues[$xKey] - $meanY); |
---|
322 | } else { |
---|
323 | $SStot += $this->_yValues[$xKey] * $this->_yValues[$xKey]; |
---|
324 | } |
---|
325 | $SScov += ($this->_xValues[$xKey] - $meanX) * ($this->_yValues[$xKey] - $meanY); |
---|
326 | if ($const) { |
---|
327 | $SSsex += ($this->_xValues[$xKey] - $meanX) * ($this->_xValues[$xKey] - $meanX); |
---|
328 | } else { |
---|
329 | $SSsex += $this->_xValues[$xKey] * $this->_xValues[$xKey]; |
---|
330 | } |
---|
331 | } |
---|
332 | |
---|
333 | $this->_SSResiduals = $SSres; |
---|
334 | $this->_DFResiduals = $this->_valueCount - 1 - $const; |
---|
335 | |
---|
336 | if ($this->_DFResiduals == 0.0) { |
---|
337 | $this->_stdevOfResiduals = 0.0; |
---|
338 | } else { |
---|
339 | $this->_stdevOfResiduals = sqrt($SSres / $this->_DFResiduals); |
---|
340 | } |
---|
341 | if (($SStot == 0.0) || ($SSres == $SStot)) { |
---|
342 | $this->_goodnessOfFit = 1; |
---|
343 | } else { |
---|
344 | $this->_goodnessOfFit = 1 - ($SSres / $SStot); |
---|
345 | } |
---|
346 | |
---|
347 | $this->_SSRegression = $this->_goodnessOfFit * $SStot; |
---|
348 | $this->_covariance = $SScov / $this->_valueCount; |
---|
349 | $this->_correlation = ($this->_valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->_valueCount * $sumX2 - pow($sumX,2)) * ($this->_valueCount * $sumY2 - pow($sumY,2))); |
---|
350 | $this->_slopeSE = $this->_stdevOfResiduals / sqrt($SSsex); |
---|
351 | $this->_intersectSE = $this->_stdevOfResiduals * sqrt(1 / ($this->_valueCount - ($sumX * $sumX) / $sumX2)); |
---|
352 | if ($this->_SSResiduals != 0.0) { |
---|
353 | if ($this->_DFResiduals == 0.0) { |
---|
354 | $this->_F = 0.0; |
---|
355 | } else { |
---|
356 | $this->_F = $this->_SSRegression / ($this->_SSResiduals / $this->_DFResiduals); |
---|
357 | } |
---|
358 | } else { |
---|
359 | if ($this->_DFResiduals == 0.0) { |
---|
360 | $this->_F = 0.0; |
---|
361 | } else { |
---|
362 | $this->_F = $this->_SSRegression / $this->_DFResiduals; |
---|
363 | } |
---|
364 | } |
---|
365 | } // function _calculateGoodnessOfFit() |
---|
366 | |
---|
367 | |
---|
368 | protected function _leastSquareFit($yValues, $xValues, $const) { |
---|
369 | // calculate sums |
---|
370 | $x_sum = array_sum($xValues); |
---|
371 | $y_sum = array_sum($yValues); |
---|
372 | $meanX = $x_sum / $this->_valueCount; |
---|
373 | $meanY = $y_sum / $this->_valueCount; |
---|
374 | $mBase = $mDivisor = $xx_sum = $xy_sum = $yy_sum = 0.0; |
---|
375 | for($i = 0; $i < $this->_valueCount; ++$i) { |
---|
376 | $xy_sum += $xValues[$i] * $yValues[$i]; |
---|
377 | $xx_sum += $xValues[$i] * $xValues[$i]; |
---|
378 | $yy_sum += $yValues[$i] * $yValues[$i]; |
---|
379 | |
---|
380 | if ($const) { |
---|
381 | $mBase += ($xValues[$i] - $meanX) * ($yValues[$i] - $meanY); |
---|
382 | $mDivisor += ($xValues[$i] - $meanX) * ($xValues[$i] - $meanX); |
---|
383 | } else { |
---|
384 | $mBase += $xValues[$i] * $yValues[$i]; |
---|
385 | $mDivisor += $xValues[$i] * $xValues[$i]; |
---|
386 | } |
---|
387 | } |
---|
388 | |
---|
389 | // calculate slope |
---|
390 | // $this->_slope = (($this->_valueCount * $xy_sum) - ($x_sum * $y_sum)) / (($this->_valueCount * $xx_sum) - ($x_sum * $x_sum)); |
---|
391 | $this->_slope = $mBase / $mDivisor; |
---|
392 | |
---|
393 | // calculate intersect |
---|
394 | // $this->_intersect = ($y_sum - ($this->_slope * $x_sum)) / $this->_valueCount; |
---|
395 | if ($const) { |
---|
396 | $this->_intersect = $meanY - ($this->_slope * $meanX); |
---|
397 | } else { |
---|
398 | $this->_intersect = 0; |
---|
399 | } |
---|
400 | |
---|
401 | $this->_calculateGoodnessOfFit($x_sum,$y_sum,$xx_sum,$yy_sum,$xy_sum,$meanX,$meanY,$const); |
---|
402 | } // function _leastSquareFit() |
---|
403 | |
---|
404 | |
---|
405 | /** |
---|
406 | * Define the regression |
---|
407 | * |
---|
408 | * @param float[] $yValues The set of Y-values for this regression |
---|
409 | * @param float[] $xValues The set of X-values for this regression |
---|
410 | * @param boolean $const |
---|
411 | */ |
---|
412 | function __construct($yValues, $xValues=array(), $const=True) { |
---|
413 | // Calculate number of points |
---|
414 | $nY = count($yValues); |
---|
415 | $nX = count($xValues); |
---|
416 | |
---|
417 | // Define X Values if necessary |
---|
418 | if ($nX == 0) { |
---|
419 | $xValues = range(1,$nY); |
---|
420 | $nX = $nY; |
---|
421 | } elseif ($nY != $nX) { |
---|
422 | // Ensure both arrays of points are the same size |
---|
423 | $this->_error = True; |
---|
424 | return False; |
---|
425 | } |
---|
426 | |
---|
427 | $this->_valueCount = $nY; |
---|
428 | $this->_xValues = $xValues; |
---|
429 | $this->_yValues = $yValues; |
---|
430 | } // function __construct() |
---|
431 | |
---|
432 | } // class bestFit |
---|