[1] | 1 | <?php |
---|
| 2 | /** |
---|
| 3 | * PHPExcel |
---|
| 4 | * |
---|
| 5 | * Copyright (c) 2006 - 2014 PHPExcel |
---|
| 6 | * |
---|
| 7 | * This library is free software; you can redistribute it and/or |
---|
| 8 | * modify it under the terms of the GNU Lesser General Public |
---|
| 9 | * License as published by the Free Software Foundation; either |
---|
| 10 | * version 2.1 of the License, or (at your option) any later version. |
---|
| 11 | * |
---|
| 12 | * This library is distributed in the hope that it will be useful, |
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
| 15 | * Lesser General Public License for more details. |
---|
| 16 | * |
---|
| 17 | * You should have received a copy of the GNU Lesser General Public |
---|
| 18 | * License along with this library; if not, write to the Free Software |
---|
| 19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
---|
| 20 | * |
---|
| 21 | * @category PHPExcel |
---|
| 22 | * @package PHPExcel_Shared_Trend |
---|
| 23 | * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel) |
---|
| 24 | * @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL |
---|
| 25 | * @version 1.8.0, 2014-03-02 |
---|
| 26 | */ |
---|
| 27 | |
---|
| 28 | |
---|
| 29 | require_once(PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php'); |
---|
| 30 | |
---|
| 31 | |
---|
| 32 | /** |
---|
| 33 | * PHPExcel_Linear_Best_Fit |
---|
| 34 | * |
---|
| 35 | * @category PHPExcel |
---|
| 36 | * @package PHPExcel_Shared_Trend |
---|
| 37 | * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel) |
---|
| 38 | */ |
---|
| 39 | class PHPExcel_Linear_Best_Fit extends PHPExcel_Best_Fit |
---|
| 40 | { |
---|
| 41 | /** |
---|
| 42 | * Algorithm type to use for best-fit |
---|
| 43 | * (Name of this trend class) |
---|
| 44 | * |
---|
| 45 | * @var string |
---|
| 46 | **/ |
---|
| 47 | protected $_bestFitType = 'linear'; |
---|
| 48 | |
---|
| 49 | |
---|
| 50 | /** |
---|
| 51 | * Return the Y-Value for a specified value of X |
---|
| 52 | * |
---|
| 53 | * @param float $xValue X-Value |
---|
| 54 | * @return float Y-Value |
---|
| 55 | **/ |
---|
| 56 | public function getValueOfYForX($xValue) { |
---|
| 57 | return $this->getIntersect() + $this->getSlope() * $xValue; |
---|
| 58 | } // function getValueOfYForX() |
---|
| 59 | |
---|
| 60 | |
---|
| 61 | /** |
---|
| 62 | * Return the X-Value for a specified value of Y |
---|
| 63 | * |
---|
| 64 | * @param float $yValue Y-Value |
---|
| 65 | * @return float X-Value |
---|
| 66 | **/ |
---|
| 67 | public function getValueOfXForY($yValue) { |
---|
| 68 | return ($yValue - $this->getIntersect()) / $this->getSlope(); |
---|
| 69 | } // function getValueOfXForY() |
---|
| 70 | |
---|
| 71 | |
---|
| 72 | /** |
---|
| 73 | * Return the Equation of the best-fit line |
---|
| 74 | * |
---|
| 75 | * @param int $dp Number of places of decimal precision to display |
---|
| 76 | * @return string |
---|
| 77 | **/ |
---|
| 78 | public function getEquation($dp=0) { |
---|
| 79 | $slope = $this->getSlope($dp); |
---|
| 80 | $intersect = $this->getIntersect($dp); |
---|
| 81 | |
---|
| 82 | return 'Y = '.$intersect.' + '.$slope.' * X'; |
---|
| 83 | } // function getEquation() |
---|
| 84 | |
---|
| 85 | |
---|
| 86 | /** |
---|
| 87 | * Execute the regression and calculate the goodness of fit for a set of X and Y data values |
---|
| 88 | * |
---|
| 89 | * @param float[] $yValues The set of Y-values for this regression |
---|
| 90 | * @param float[] $xValues The set of X-values for this regression |
---|
| 91 | * @param boolean $const |
---|
| 92 | */ |
---|
| 93 | private function _linear_regression($yValues, $xValues, $const) { |
---|
| 94 | $this->_leastSquareFit($yValues, $xValues,$const); |
---|
| 95 | } // function _linear_regression() |
---|
| 96 | |
---|
| 97 | |
---|
| 98 | /** |
---|
| 99 | * Define the regression and calculate the goodness of fit for a set of X and Y data values |
---|
| 100 | * |
---|
| 101 | * @param float[] $yValues The set of Y-values for this regression |
---|
| 102 | * @param float[] $xValues The set of X-values for this regression |
---|
| 103 | * @param boolean $const |
---|
| 104 | */ |
---|
| 105 | function __construct($yValues, $xValues=array(), $const=True) { |
---|
| 106 | if (parent::__construct($yValues, $xValues) !== False) { |
---|
| 107 | $this->_linear_regression($yValues, $xValues, $const); |
---|
| 108 | } |
---|
| 109 | } // function __construct() |
---|
| 110 | |
---|
| 111 | } // class linearBestFit |
---|