1 | <?php |
---|
2 | /** |
---|
3 | * PHPExcel |
---|
4 | * |
---|
5 | * Copyright (c) 2006 - 2014 PHPExcel |
---|
6 | * |
---|
7 | * This library is free software; you can redistribute it and/or |
---|
8 | * modify it under the terms of the GNU Lesser General Public |
---|
9 | * License as published by the Free Software Foundation; either |
---|
10 | * version 2.1 of the License, or (at your option) any later version. |
---|
11 | * |
---|
12 | * This library is distributed in the hope that it will be useful, |
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
15 | * Lesser General Public License for more details. |
---|
16 | * |
---|
17 | * You should have received a copy of the GNU Lesser General Public |
---|
18 | * License along with this library; if not, write to the Free Software |
---|
19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
---|
20 | * |
---|
21 | * @category PHPExcel |
---|
22 | * @package PHPExcel_Shared_Trend |
---|
23 | * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel) |
---|
24 | * @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL |
---|
25 | * @version 1.8.0, 2014-03-02 |
---|
26 | */ |
---|
27 | |
---|
28 | |
---|
29 | require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php'; |
---|
30 | require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/JAMA/Matrix.php'; |
---|
31 | |
---|
32 | |
---|
33 | /** |
---|
34 | * PHPExcel_Polynomial_Best_Fit |
---|
35 | * |
---|
36 | * @category PHPExcel |
---|
37 | * @package PHPExcel_Shared_Trend |
---|
38 | * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel) |
---|
39 | */ |
---|
40 | class PHPExcel_Polynomial_Best_Fit extends PHPExcel_Best_Fit |
---|
41 | { |
---|
42 | /** |
---|
43 | * Algorithm type to use for best-fit |
---|
44 | * (Name of this trend class) |
---|
45 | * |
---|
46 | * @var string |
---|
47 | **/ |
---|
48 | protected $_bestFitType = 'polynomial'; |
---|
49 | |
---|
50 | /** |
---|
51 | * Polynomial order |
---|
52 | * |
---|
53 | * @protected |
---|
54 | * @var int |
---|
55 | **/ |
---|
56 | protected $_order = 0; |
---|
57 | |
---|
58 | |
---|
59 | /** |
---|
60 | * Return the order of this polynomial |
---|
61 | * |
---|
62 | * @return int |
---|
63 | **/ |
---|
64 | public function getOrder() { |
---|
65 | return $this->_order; |
---|
66 | } // function getOrder() |
---|
67 | |
---|
68 | |
---|
69 | /** |
---|
70 | * Return the Y-Value for a specified value of X |
---|
71 | * |
---|
72 | * @param float $xValue X-Value |
---|
73 | * @return float Y-Value |
---|
74 | **/ |
---|
75 | public function getValueOfYForX($xValue) { |
---|
76 | $retVal = $this->getIntersect(); |
---|
77 | $slope = $this->getSlope(); |
---|
78 | foreach($slope as $key => $value) { |
---|
79 | if ($value != 0.0) { |
---|
80 | $retVal += $value * pow($xValue, $key + 1); |
---|
81 | } |
---|
82 | } |
---|
83 | return $retVal; |
---|
84 | } // function getValueOfYForX() |
---|
85 | |
---|
86 | |
---|
87 | /** |
---|
88 | * Return the X-Value for a specified value of Y |
---|
89 | * |
---|
90 | * @param float $yValue Y-Value |
---|
91 | * @return float X-Value |
---|
92 | **/ |
---|
93 | public function getValueOfXForY($yValue) { |
---|
94 | return ($yValue - $this->getIntersect()) / $this->getSlope(); |
---|
95 | } // function getValueOfXForY() |
---|
96 | |
---|
97 | |
---|
98 | /** |
---|
99 | * Return the Equation of the best-fit line |
---|
100 | * |
---|
101 | * @param int $dp Number of places of decimal precision to display |
---|
102 | * @return string |
---|
103 | **/ |
---|
104 | public function getEquation($dp=0) { |
---|
105 | $slope = $this->getSlope($dp); |
---|
106 | $intersect = $this->getIntersect($dp); |
---|
107 | |
---|
108 | $equation = 'Y = '.$intersect; |
---|
109 | foreach($slope as $key => $value) { |
---|
110 | if ($value != 0.0) { |
---|
111 | $equation .= ' + '.$value.' * X'; |
---|
112 | if ($key > 0) { |
---|
113 | $equation .= '^'.($key + 1); |
---|
114 | } |
---|
115 | } |
---|
116 | } |
---|
117 | return $equation; |
---|
118 | } // function getEquation() |
---|
119 | |
---|
120 | |
---|
121 | /** |
---|
122 | * Return the Slope of the line |
---|
123 | * |
---|
124 | * @param int $dp Number of places of decimal precision to display |
---|
125 | * @return string |
---|
126 | **/ |
---|
127 | public function getSlope($dp=0) { |
---|
128 | if ($dp != 0) { |
---|
129 | $coefficients = array(); |
---|
130 | foreach($this->_slope as $coefficient) { |
---|
131 | $coefficients[] = round($coefficient,$dp); |
---|
132 | } |
---|
133 | return $coefficients; |
---|
134 | } |
---|
135 | return $this->_slope; |
---|
136 | } // function getSlope() |
---|
137 | |
---|
138 | |
---|
139 | public function getCoefficients($dp=0) { |
---|
140 | return array_merge(array($this->getIntersect($dp)),$this->getSlope($dp)); |
---|
141 | } // function getCoefficients() |
---|
142 | |
---|
143 | |
---|
144 | /** |
---|
145 | * Execute the regression and calculate the goodness of fit for a set of X and Y data values |
---|
146 | * |
---|
147 | * @param int $order Order of Polynomial for this regression |
---|
148 | * @param float[] $yValues The set of Y-values for this regression |
---|
149 | * @param float[] $xValues The set of X-values for this regression |
---|
150 | * @param boolean $const |
---|
151 | */ |
---|
152 | private function _polynomial_regression($order, $yValues, $xValues, $const) { |
---|
153 | // calculate sums |
---|
154 | $x_sum = array_sum($xValues); |
---|
155 | $y_sum = array_sum($yValues); |
---|
156 | $xx_sum = $xy_sum = 0; |
---|
157 | for($i = 0; $i < $this->_valueCount; ++$i) { |
---|
158 | $xy_sum += $xValues[$i] * $yValues[$i]; |
---|
159 | $xx_sum += $xValues[$i] * $xValues[$i]; |
---|
160 | $yy_sum += $yValues[$i] * $yValues[$i]; |
---|
161 | } |
---|
162 | /* |
---|
163 | * This routine uses logic from the PHP port of polyfit version 0.1 |
---|
164 | * written by Michael Bommarito and Paul Meagher |
---|
165 | * |
---|
166 | * The function fits a polynomial function of order $order through |
---|
167 | * a series of x-y data points using least squares. |
---|
168 | * |
---|
169 | */ |
---|
170 | for ($i = 0; $i < $this->_valueCount; ++$i) { |
---|
171 | for ($j = 0; $j <= $order; ++$j) { |
---|
172 | $A[$i][$j] = pow($xValues[$i], $j); |
---|
173 | } |
---|
174 | } |
---|
175 | for ($i=0; $i < $this->_valueCount; ++$i) { |
---|
176 | $B[$i] = array($yValues[$i]); |
---|
177 | } |
---|
178 | $matrixA = new Matrix($A); |
---|
179 | $matrixB = new Matrix($B); |
---|
180 | $C = $matrixA->solve($matrixB); |
---|
181 | |
---|
182 | $coefficients = array(); |
---|
183 | for($i = 0; $i < $C->m; ++$i) { |
---|
184 | $r = $C->get($i, 0); |
---|
185 | if (abs($r) <= pow(10, -9)) { |
---|
186 | $r = 0; |
---|
187 | } |
---|
188 | $coefficients[] = $r; |
---|
189 | } |
---|
190 | |
---|
191 | $this->_intersect = array_shift($coefficients); |
---|
192 | $this->_slope = $coefficients; |
---|
193 | |
---|
194 | $this->_calculateGoodnessOfFit($x_sum,$y_sum,$xx_sum,$yy_sum,$xy_sum); |
---|
195 | foreach($this->_xValues as $xKey => $xValue) { |
---|
196 | $this->_yBestFitValues[$xKey] = $this->getValueOfYForX($xValue); |
---|
197 | } |
---|
198 | } // function _polynomial_regression() |
---|
199 | |
---|
200 | |
---|
201 | /** |
---|
202 | * Define the regression and calculate the goodness of fit for a set of X and Y data values |
---|
203 | * |
---|
204 | * @param int $order Order of Polynomial for this regression |
---|
205 | * @param float[] $yValues The set of Y-values for this regression |
---|
206 | * @param float[] $xValues The set of X-values for this regression |
---|
207 | * @param boolean $const |
---|
208 | */ |
---|
209 | function __construct($order, $yValues, $xValues=array(), $const=True) { |
---|
210 | if (parent::__construct($yValues, $xValues) !== False) { |
---|
211 | if ($order < $this->_valueCount) { |
---|
212 | $this->_bestFitType .= '_'.$order; |
---|
213 | $this->_order = $order; |
---|
214 | $this->_polynomial_regression($order, $yValues, $xValues, $const); |
---|
215 | if (($this->getGoodnessOfFit() < 0.0) || ($this->getGoodnessOfFit() > 1.0)) { |
---|
216 | $this->_error = True; |
---|
217 | } |
---|
218 | } else { |
---|
219 | $this->_error = True; |
---|
220 | } |
---|
221 | } |
---|
222 | } // function __construct() |
---|
223 | |
---|
224 | } // class polynomialBestFit |
---|